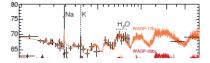
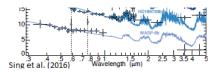
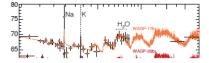

Blue Atmosphere or Stellar Activity Is the Blue Atmosphere of the Exoplanet GJ 3470 b Real?

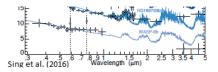


Silvia Kunz European Week of Astronomy and Space Science June 27, 2017


Hot Jupiters Have Blue Atmospheres


Hot Jupiters Have Blue Atmospheres

What about low-mass planets?



Hot Jupiters Have Blue Atmospheres

What about low-mass planets?

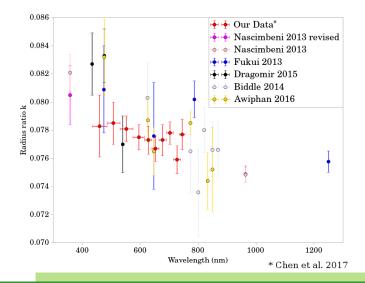
Up to now only 3 claimed detections!

GJ 3470 - Properties of the System

planet mass planet radius planet mean density semimajor axis orbital period	$\begin{array}{c} 13.73\text{M}_\oplus\\ 3.88\text{R}_\oplus\\ 1.18\text{g}\text{cm}^{-3}\\ 0.031\text{AU}\\ 3.3367\text{days} \end{array}$	\pm \pm \pm	$\begin{array}{c} 1.61\text{M}_\oplus \\ 0.32\text{R}_\oplus \\ 0.33\text{g}\text{cm}^{-3} \\ 0.0028\text{AU} \end{array}$
spectral type distance stellar radius stellar mass	M 1.4 28.82 pc 0.48 R _☉ 0.51 M _☉	± ±	

Why is this planet interesting?

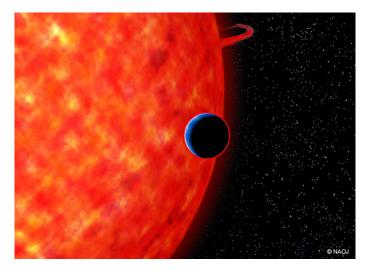
• orbits a relatively bright M dwarf (mag_V = 12.332)

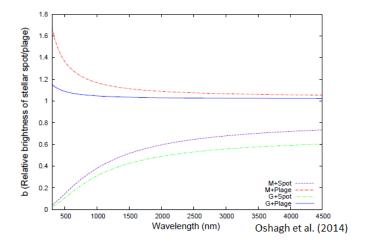

- orbits a relatively bright M dwarf (mag_V = 12.332)
- transiting planet \rightarrow transmission spectroscopy is possible

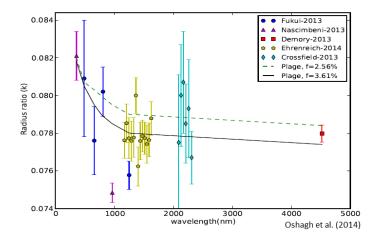
- orbits a relatively bright M dwarf (mag_V = 12.332)
- transiting planet \rightarrow transmission spectroscopy is possible
- good for atmospheric detections \rightarrow favorable planet–to–star radius ratio

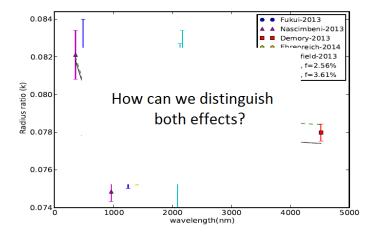

- orbits a relatively bright M dwarf (mag_V = 12.332)
- transiting planet \rightarrow transmission spectroscopy is possible
- good for atmospheric detections \rightarrow favorable planet–to–star radius ratio
- one of the lightest planets with indications of an atmosphere

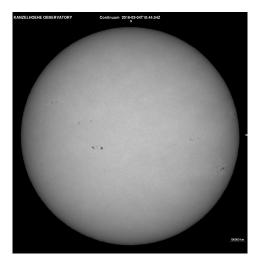
- orbits a relatively bright M dwarf (mag_V = 12.332)
- transiting planet \rightarrow transmission spectroscopy is possible
- good for atmospheric detections \rightarrow favorable planet–to–star radius ratio
- one of the lightest planets with indications of an atmosphere
- it is still debated if atmospheres can survive in the vincinity of M dwarfs

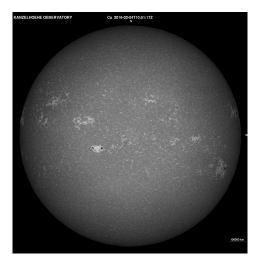

GJ 3470 b's Blue Atmosphere

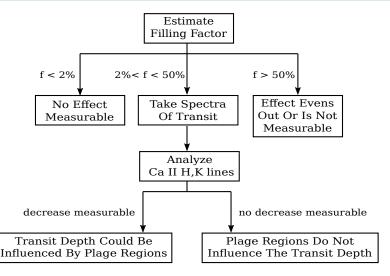

Job done?


Stars Have Activity Features

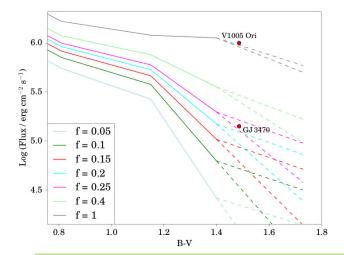

Plage Regions Are Brighter and Spots Are Darker in the Blue


Bigger Radius in the Blue than in the Red?

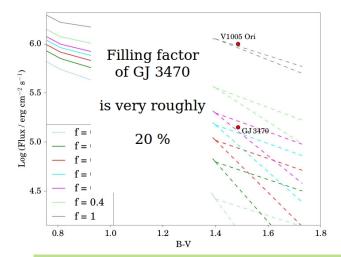

Bigger Radius in the Blue than in the Red?

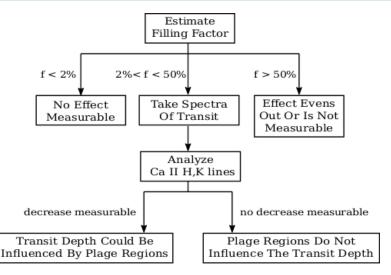


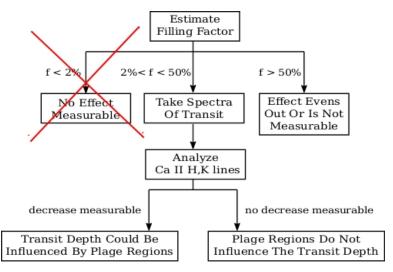
Plage Regions are Hardly Visible in the Continuum...

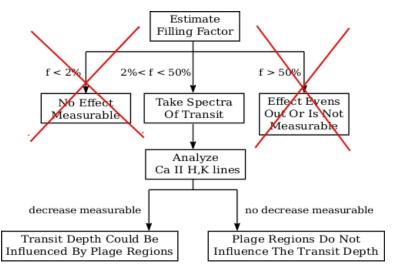


.. but Plage Regions are Visible in a Ca II K Filter

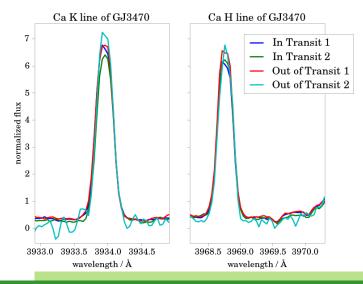


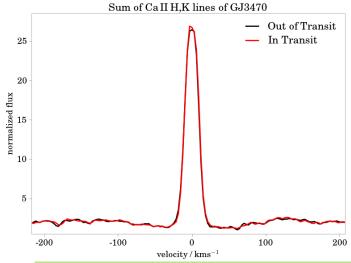



Filling Factor of GJ 3470 as in Fawzy et al. (2002)



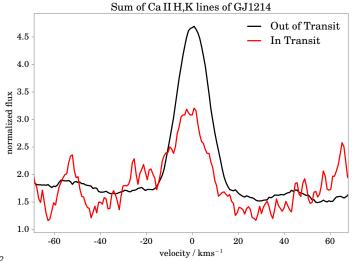
Filling Factor of GJ 3470 as in Fawzy et al. (2002)

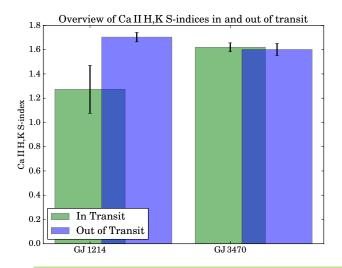




GJ 3470 b – No Difference in Ca II H,K lines

Still No Difference in Sum of Ca II H,K lines


Maybe we do not have to care about plage regions at all?


GJ 1214 - Properties of the System

planet mass planet radius planet mean density semimajor axis orbital period	$\begin{array}{l} 6.26 \ \mathrm{M}_\oplus \\ 2.80 \ \mathrm{R}_\oplus \\ 1.56 \ \mathrm{g} \ \mathrm{cm}^{-3} \\ 0.0141 \ \mathrm{AU} \\ 1.5804 \ \mathrm{days} \end{array}$	\pm \pm \pm	$\begin{array}{c} 0.91\text{M}_\oplus\\ 0.24\text{R}_\oplus\\ 0.40\text{g}\text{cm}^{-3}\\ 0.0003\text{AU} \end{array}$
spectral type distance stellar radius stellar mass	M 4.5 14.55 pc 0.213 R _☉ 0.176 M _☉	+ + +	$0.3{ m pc}$ $0.011{ m R}_{\odot}$ $0.009{ m M}_{\odot}$

Sum of the Lines is Smaller During Transit

Final Result

Authors:

G. Chen, E.W. Guenther, E. Pallé, L. Nortmann, G. Nowak, S. Kunz, H. Parviainen and F. Murgas

- The GTC exoplanet transit spectroscopy survey
 V. A spectrally-resolved Rayleigh scattering slope in GJ 3470 b
- Astronomy & Astrophysics, 600:A138, 2017.

• Aim: find out if the blue atmospheres are real or stellar activity?

- Aim: find out if the blue atmospheres are real or stellar activity?
- Method: check CaIIH,K lines as tracers of stellar activity

- Aim: find out if the blue atmospheres are real or stellar activity?
- Method: check Call H,K lines as tracers of stellar activity
- GJ 3470 b: no changes in Ca II H,K lines during transit \rightarrow the blue atmosphere is most probably real

- Aim: find out if the blue atmospheres are real or stellar activity?
- Method: check Call H,K lines as tracers of stellar activity
- GJ 3470 b: no changes in Ca II H,K lines during transit \rightarrow the blue atmosphere is most probably real
- GJ 1214 b: significant decrease during transit
 → increase most probably due to activity

- Aim: find out if the blue atmospheres are real or stellar activity?
- Method: check CaIIH,K lines as tracers of stellar activity
- GJ 3470 b: no changes in Ca II H,K lines during transit \rightarrow the blue atmosphere is most probably real
- GJ 1214 b: significant decrease during transit \rightarrow increase most probably due to activity
- if Rayleigh scattering is observed follow up measurements should be made