

Challenges in Exoplanet Characterization

Ravit Helled

Institute for Computational Science Center for Theoretical Astrophysics & Cosmology, University of Zurich

EWASS - 2017

Exoplanets Discovery \rightarrow Exoplanets Characterization

Planets are diverse: a large variety of masses and radii

Time/Age Evolution, time dependence

Evolution Atmosphere loss/secondary atmospheres, mixing, differentiation

How do we characterize exoplanets?

Measured mass & radius (M-R diagram) \rightarrow mean density \rightarrow composition. How can we use the M-R relation to derive composition & internal structure?

Mean density does NOT give us the distribution of the materials A very large range of compositions will provide the same mean density

How do we know that there are heavy elements in giant planets?

The mass-radius relation is a relationship between the radius, R, of an astrophysical object and its mass, M.

For stars: $R \alpha M$

Degenerate pressure: R α M^{-1/3}

Coulomb pressure (small objects): R α M^{1/3}

Masses and radii of exoplanets

gas giants

A simple M-R analysis suggests that something occurs in "hot Jupiters"

Masses and radii of exoplanets **small/intermediate masss**

For small planets we can try to identify the composition and the existence of an atmosphere

Venturini & Helled, 2017 (submitted)

Exoplanet characterization

The challenges for theory:

- A degenerate problem: many unknowns and only a few constraints.
- Linking M-R relation and age of the system with planetary evolution.
- Model assumptions:
 - What materials to use?
 - How many layers to assume?
 - Are the materials well-mixed or differentiated?
 - Is the planet fully adiabatic?
 - How to include interior-atmosphere interactions?

Exoplanet characterization

The challenges for theory:

- degenerate problem: A many unknow Are there compositions which are Linking • impossible? more likely?
- Model assumptions: ۲
 - What materials to use?

system when pranectary even

- How many layers to assume?
- Are the materials well-mixed or differentiated?
- Is the planet fully adiabatic?
- How to include interior-atmosphere interactions?

assumptions

position,

l structure

The Mass-Radius (M-R) relation

Gaseous planets:

- Hydrogen and helium, heavy elements
- Inflated hot-Jupiters (e.g., Guillot et al., 1996; Burrows et al., 2007)
- Cold Jupiters (e.g., Miller & Fortney, 2011)

Sensitive to temperature, internal structure, heavy element mass, EOS, age

Terrestrial planets:

- Super-Earths; mini-Neptunes (e.g., Valencia et al., 2007; Seager et al., 2007)
- Earth-like composition, M-R relation of pure refractory materials Sensitive to composition, EOS

What about a mixture?

- Exoplanets are diverse many intermediate mass with volatiles.
- The challenge: temperature, age, and internal structure (Baraffe et al., 2008; Vazan et al., 2013).

A few examples...

The importance of the distribution of heavy elements (and EOS)

M-R(t) is affected by the heavy-element distribution in metal-rich giant planets.

The importance of the distribution of heavy elements (and EOS)

M-R(t) is affected by the heavy-element distribution in metal-rich giant planets.

The importance of the distribution of heavy elements (and EOS)

For $Z \leq 0.2$ the M-R relation is less sensitive to the assumed distribution.

The importance of composition gradients Effect of composition

Gaseous (massive) planets:

$1 M_{I}$ with Z=0.35

Efficiency of mixing depends on the primordial internal structure and on the assumed composition

The example of WASP-96b

1 bar temperature: of 1285 K Heavy elements – H₂O $M_{p}=0.48\pm0.03M_{J}$ $Rp=1.2\pm0.06R_{J}$ $a = 0.0453\pm0.00128 \text{ AU}$ $M_{\star}=1.06\pm0.09M_{\odot}$

Lahav et al., in prep.

The example of WASP-96b

1 bar temperature is lowered by 20% Heavy elements – H₂O $M_{p}=0.48\pm0.03M_{J}$ $Rp=1.2\pm0.06R_{J}$ $a = 0.0453\pm0.00128 \text{ AU}$ $M_{\star}=1.06\pm0.09M_{\odot}$

The example of WASP-96b

1 bar temperature is increased by 20% Heavy elements – H₂O $M_{p}=0.48\pm0.03M_{J}$ $Rp=1.2\pm0.06R_{J}$ $a = 0.0453\pm0.00128 \text{ AU}$ $M_{\star}=1.06\pm0.09M_{\odot}$

The example of WASP-96b

1 bar temperature: of 1285 K Heavy elements – SiO₂

 $M_{p}=0.48\pm0.03M_{J}$ $Rp=1.2\pm0.06R_{J}$ $a = 0.0453\pm0.00128 \text{ AU}$ $M_{\star}=1.06\pm0.09M_{\odot}$

Best fit composition: Z=0.295 More than 20% difference due to different EOS.

10

The importance of the assumed composition (high-Z)

see Baraffe et al.,2008 for details

The importance of the EOS (mixed model)

Intermediate-mass planets:

see Baraffe et al.,2008 for details

The importance of the EOS (core+envelope)

Intermediate-mass planets:

see Baraffe et al.,2008 for details

The importance of the EOS (core+envelope)

Intermediate-mass planets:

see Baraffe et al.,2008 for details

The importance of assumed composition, distribution, EOS

The importance of radial distance

Intermediate-mass planets:

A non-monotonic behavior of M-R due to dissociation (the example of CH_4 planets)

<u>Pure CH₄ planets:</u>

If $P_c > P_{diss}$ carbon EOS (core). Dissociation of CH_4 produces $1/3M_C$ of H which <u>is assumed</u> to form H_2 -atmosphere. The remaining mass is in a CH_4 shell.

• <u>CH₄ planets + SiO₂/Fe core:</u>

Innermost region is SiO_2/Fe above the core, if $P>P_{diss}$ carbon EOS, otherwise CH₄. Mass of H-atmosphere is 1/3 the mass of the carbon shell.

To be explored in detail: other materials; temperature profiles; photoevaporation; differentiation, chemical interactions

M-R relation: CH₄ planets

At high enough mass (depending on P_{diss}) CH₄ dissociates \rightarrow a jump in M-R relation

M-R relation: CH₄ planets

At high enough mass (depending on P_{diss}) CH₄ dissociates \rightarrow a jump in M-R relation

At high enough mass (depending on P_{diss}) CH₄ dissociates \rightarrow a jump in M-R relation

The importance of thermal effects & existence of an atmosphere on the M-R relation

The importance of thermal effects & existence of an atmosphere on the M-R relation

Conclusions & future work

- The M-R relation depends on assumed composition, EOS & distribution of heavy elements, age, temperature, opacity, irradiation.
- Intermediate-mass planets (with volatiles) are more sensitive to the EOS and the materials' distribution.
- The M-R relation can be complex including a non-monotonic behavior. Geophysical processes: mixing, outgassing, atmospheric loss, etc.

Conclusions & future work

- The M-R relation depends on assumed composition, EOS & distribution of heavy elements, age, temperature, opacity, irradiation.
- Intermediate-mass planets (with volatiles) are more sensitive to the EOS and the materials' distribution.
- The M-R relation can be complex including a non-monotonic behavior. Geophysical processes: mixing, outgassing, atmospheric loss, etc.

Future work:

- Identify theoretical uncertainty on M-R relation → a crucial piece for data interpretation (TESS, CHEOPS, PLATO 2.0).
- Connect atmospheric measurements with deep interior.

