

Constraining helium abundances with precise binary parameters

Jessica Kirkby-Kent

Collaborators: P.F.L. Maxted, A.M. Serenelli, D.R. Anderson, C. Hellier, R.G. West Astrophysics Group, Keele University, Keele, Staffordshire, ST5 5BG, UK

Image from: http://planetxnews.com/2015/10/17/our-sun-has-a-twin-companion-star/

What's this got to do with planets?

 Want to understand planetary environment, now and in the past • Stellar evolutionary models used to find the mass and age of a planet-host star.

Physics in the models

"To borrow a line from the poet Godfrey Saxe, isochrones, like sausages,

cease to inspire respect in proportion as we know how they are made." A. Dotter

- Complex prescriptions with calibrated free parameters.
- Free parameter poorly constrained by observations. Large sources of uncertainty
- Use detached eclipsing binary systems, with precise parameters to calibrate these free parameters.

 0.37% uncertainty in masses, 1.3% R₁ and 1.1% in R₂

Parameter	Star 1	Star 2
$M({ m M}_{ m o})$	1.1544(43)	0.7833(28)
$R~({\sf R}_{ m o})$	1.834(23)	0.7291(81)
$\mathcal{T}_{_{\mathrm{eff}}}\left(K ight)$	6430±80	5300±65
[Fe/H]	-0.17±0.08	-0.18±0.07

Kirkby-Kent et al. submitted

Stellar Evolutionary Models

- Use GARSTEC stellar evolution code.
- Code used in Bagemass for fitting planet host stars.
- MCMC procedure to fit observed parameters for different initial helium abundances.
- Models used for AI Phe only allow either the mixing length or helium abundance to be explored.
- Fitted parameters: $T_1, T_2/T_1, \rho_1, \rho_2, M_2/M_1, M_{sum}$, [Fe/H]_s
- For WASP 0639-32, mixing length fitted for each initial helium abundance.
- Fitted parameters: *T*, ρ , *M*, [Fe/H]_s for each star.

AI Phe: Stellar Models

$lpha_{ m ml}$	ΔY	$ au_{ m best}$	χ^2	O 8
		(Gyr)		- Secondary
1.22	0.00	3.47	32.8	
1.36	0.00	3.60	21.7	0.7
1.50	0.00	5.03	16.4	
1.78	0.00	4.39	2.4	$\odot 0.6$
2.04	0.00	4.02	6.5	
2.32	0.00	3.77	20.0	
1.78	-0.05	4.95	41.0	
1.78	-0.04	4.71	28.5	
1.78	-0.03	4.52	20.0	0.4
1.78	-0.02	4.63	9.1	
1.78	-0.01	4.47	4.1	- Y = 0.261
1.78	0.00	4.39	2.4	± 0.02
1.78	0.01	4.34	3.2	7000 6500 6000 5500 5000 4500
1.78	0.02	4.27	5.2	$T_{ m eff}~[m K]$
1.78	0.03	4.17	8.2	
1.78	0.04	4.06	11.7	• Doesn't explore all options, there could be a
1.78	0.05	3.91	15.5	better solution in the parameter space

			Y				
Parameter	0.231	0.251	0.271	0.291	0.311	0.331	0.8 - Primary - Secondary -
$\tau_{\rm best}$ (Gyr)	5.38	5.09	4.47	4.15	3.58	3.30	
T_1 (K)	6275	6276	6333	6368	6446	6473	0.0
$M_1 (M_{\odot})$	1.1758	1.1692	1.1713	1.1561	1.1557	1.1481	for the second sec
R_1 (R_{\odot})	1.7963	1.7916	1.8106	1.8219	1.8468	1.8634	0.4
ρ_1 (ρ_{\odot})	0.2024	0.2028	0.1971	0.1908	0.1831	0.1772	
$\alpha_{\rm ml_1}$	2.058	2.056	2.019	2.020	1.917	1.875	
χ_1^2	10.31	6.37	3.58	1.37	0.33	0.16	$\log(T)$
T_2 (K)	5169	5176	5200	5246	5296	5312	= 0.0
M_2 (M_{\odot})	0.8002	0.7947	0.7814	0.7697	0.7612	0.7489	
R_2 (R_{\odot})	0.7349	0.7336	0.7265	0.7248	0.7247	0.7217	-0.2
ρ_2 (ρ_{\odot})	2.0123	2.0072	2.0317	2.019	1.9958	1.9874	ST-T-T-T
$\alpha_{\rm ml_2}$	2.035	2.031	1.960	1.871	1.769	1.700	-0.4
χ^2_2	4.04	1.13	0.16	0.58	2.51	5.92	$ \begin{array}{c} - & Y = 0.291 \\ - & \pm 0.02 \end{array} $
$\chi^2_{ m tot}$	14.35	7.50	3.74	1.95	2.84	6.08	-0.6 -0.6

Helium abundance

AI Phe:
$$Y_{ini} = 0.261_{-0.01}^{+0.02}$$
 WASP 0639-32: $Y_{ini} = 0.291 \pm 0.02$

T_{eff} [K]

• Different standard solar models, or different enrichment?

Summary

- With high-precision masses, radii and temperatures, it is possible to constrain the initial helium abundance in stellar evolutionary models.
- Very few system currently met the required precision, but we are working to obtain more systems.
- There is a lot of uncertainty in how the initial helium abundance in the evolutionary models is calibrated, and it varies between different evolutionary codes.
- Ultimately this is going to be affecting the ages of planet-host stars, and further work will be needed to understand why some planet-hosts (HAT-P-11) have such high helium abundances.