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Accretion Disk-Wind Model
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Contamination of intrinsic NALs

Some fraction of NALs are physically associated to background quasars because:

1) Number of C IV NALs changes on the properties of background quasars
(Richards+ 1999; 2001) = intrinsic NAL contamination as high as 36%

2) Number excess of C IV NALs within 10,000 km/s of z_, of background quasars
(~2200 SDSS quasars; Nestor+ 2008) - intrinsic NAL as high as 50%
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Physical Properties of NALs and mini-BALs
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How to identify intrinsic absorption lines

Dilution of absorption troughs by unocculted light from the quasar continuum
source makes the optical depth ratio of resonant UV doublets (e.g., CIV, N V)
deviate from 2:1, as dictated by atomic physics (e.g., Wampler+ 1995).
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150 NAL systems in 37 Keck/HIRES quasar spectra
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Variability in BALs, mini-BAL, and NAL

A significant fraction (70-90%) of BALs and mini-BALs are variable, while only 20% of NALs
show weak variability. The variability amplitude becomes larger in longer time intervals.
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Possible Origins of Variability

Gas motion across our sightline to the source [Gas motion (GM) scenario)

Motion of the absorbing gas parcels across our line
a :' > of sight change the covering factor (i.e., absorption

profile and strength).
e.g., Hamann+ 1997, Gibson+ 2008

Change in ionization condition [Variable lonization State (VIS) scenario)
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Changes in the ionization state of the absorber due to a variable ionizing
continuum cause variability in absorption strength.

e.g., Hamann+ 2011, Trevese+ 2013
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Narrow components in mini-BALs

Narrow kinematic components are sometimes found near the centers of mini-BALs.
Their strengths and profiles (after broader troughs are fitted out) are stable like
NALs. Both of them could have a same origin.
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e The broader troughs of mini-BALs arise in diffusely distributed gas (1<1), and it
could be a filamentary structure above the main stream of the outflow.
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Complex Internal Structure?

The outflow stream may have a complex internal structure that consist of a number
of small clumpy clouds (< 103 pc) with very high gas densities (n, 2 10’ cm) (e.g.,
Hamann+ 2013).

420

A radiation-MHD simulation (Takeuchi+ 2013).
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Multi-sightline observation

Using Subaru and VLT, we performed multi-sightline spectroscopy of
a gravitationally lensed quasar SDSS J1029+2623 whose image separation
(~22.5”) is largest among those discovered so far.
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SDSS J1029+2623

© NASA, ESA, M. Oguri, T. Schrabback
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Sightline difference in absorption lines

A clear difference in absorption
profile between the images A and B
in the shaded area (Misawa+ 2013).
Possible scenarios include:

2. difference in the absorption
level along different sightlines
(Chelouche 2003; Green 2006)

contaminated by
un related features

The difference in absorption profiles

has almost unchanged, implying the

difference is due to differences along
gk el - - the sightlines (Misawa+ 2014).

Outflow Velocity (km/s) - cloud size is <103 pC, if r~10pc
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Possible geometry of the AGN outflow
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Properties of BAL, mini-BAL, and intrinsic NAL

I T T T

FWHM [km/s] > 2,000 500 - 2,000 <500
Detection Rate [%] ~20 ~5 ~50
Strength very often very often rarely
Variability
Profile Variable stable stable
Origin of variability GM & VIS VIS (broad) -
Transverse cloud size [pc] < 10 3 (per cloud) at r ~10pc
Radial distance [pc] <100 <100 > 100
Location (xz\ilr:as?::;:q) 'r(‘:;;m::';t)e high latitude
Total column density* [cm™2] 1023 -10%4 intermediate <1022

* from X-ray observations (e.g., Gallagher+ 2002, Giustini+ 2011, Misawa+ 2008)
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Possible Geometry of the Outflow

- high-density clouds at high latitude
* coverage fraction is “50%
* rarely variable

- filament above main wind
= coverage fraction is ~“5%

* variable due to VIS
 behind warm absorber
@ » 4 * radial distance is ~pc
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* main stream of outflow

= coverage fraction is “20%
= variable due to GM & VIS
* behind warm absorber

* radial distance is ~pc

warm absorber

O o A cartoon from
O Misawa+ 2014

UV continuum source
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SUMMARY

e BAL, mini-BAL, and intrinsic NAL are complementary to each other for a study of
outflow wind because their locations in/around the outflow wind are different.

* Global coverage fractions (i.e., detection rate) of BAL, mini-BAL, and intrinsic NAL
are ~20%, ~5%, and ~50%, respectively (i.e., total coverage fraction is ~75%).

e A ssignificant fraction (~¥70-90%) of BALs and mini-BALs are variable in a few years,
while NALs and the narrow components in mini-BALs are rarely variable.

e There are two possible origins of time variability: a) gas motion across our sightline
and b) a change in ionization state of the absorber. The latter is more important for
mini-BAL and NAL absorbers.

e Outflow wind in a gravitationally lensed quasar SDSS J1029+2623 have an internal
structure with a scale of <103 pc assuming its radial distance is ~10pc.

e Possible Geometry: mini-BALs originate in a filamentary structure rising from the
main stream of the outflow (i.e., BAL absorber), while intrinsic NALs arise in a high-
density clumpy clouds in the polar direction.



