

Joint Gravitational Wave and Electromagnetic Observation of Neutron Star- Black Hole Coalescing Binaries: A New Method to Constrain Neutron Star Radius

Stefano Ascenzi

EWASS 27-06-2017

Co-authors: N. De Lillo, C. J. Haster, F. Ohme, F. Pannarale

Collaborators: E. Brocato, V. Fafone, V. Ferrari, S. Marassi, S. Piranomonte

UNIVERSITA' DEGLI STUDI DI ROMA

Short Gamma Ray Burst

NS-BH Merger

2/8

(Bartos 2012)

NS Radii and EoS

3/8

⁽Lattimer & Prakash 2015)

NS Radii are poorly constrained!

Constraints on NS EoS due to mass and radii measurements of quiescent LMXB

Method

Results

Comparison with other methods

Conclusions

Summary

- Coalescing NS-BH binaries are promising LIGO-Virgo sources
- They are also possible progenitors of sGRB
- We developed a method to measure NS radii using a sGRB-GW joint detection.

- Model dependent method (but this is a common drawback)
- Low rate of joint detection with present facilities (but NOT with third generation interferometers!)

- Radically different from other methods, enables cross-checks with other methods.
- For realistic SNR we are below to **7% of accuracy**

Thank you for your attention!

Prior/Posterior Distribution from GW Parameter estimation

 m_1

 m_2

Prior Distribution for the free parameters ϵ

Flat cos beaming angle in [cos(30°)-cos(1°)]

Measuring NS Radii

NS with thermonuclear bursts

Common Drawbacks

- Source distance required
- ISM absorption required
- Low (multipolar) source magnetic field required
- Model dependency (spacetime geometry, stellar atmosphere, hot spots geometry)
- Absolute X-ray flux calibration

Accreting Pulsars

Efficiency-Radius degeneracy

More Results...

Predictivity Test: We are able to reconstruct an injected NS

2.5

2.0

1.5

1.0

8

M_{NS} [M_O]

Comparison between our results (those in previous slides) and results from observation of two qLMXBs

More Results...

Higher energy translates in higher degeneracy between parameters

Rates

Epoch	Run Duration	BNS Range (Mpc)		Number of NSBH Detections	Number of GW–GRB Detections		
		LIGO	Virgo		All Sky	Fermi GBM	Swift BAT
2015	3 months	70–130		0.0001-1	$3 imes 10^{-4}$ 0.06	$2 imes 10^{-4}$ –0.03	4×10^{-5} -0.007
2016-17	6 months	130-200	30-100	0.002–10	0.005-0.5	0.003-0.3	$7 imes10^{-4}$ – 0.07
2017-18	9 months	200-280	100-140	0.01–40	0.03-2	0.02-1	0.004-0.3
2019+	(per year)	330	110-220	0.05-100	0.2–6	0.1–2	0.02–0.5
2022+	(per year)	330	220	0.1–200	0.4–10	0.2–3	0.03-0.7

$z_{max,NSBH} \simeq 4$ (E	T design stuc	gw.eu/etdsdocument	
Source	BNS	NS-BH	BBH
Rate $(Mpc^{-1} Myr^{-1})$	0.1–6	0.01-0.3	$2 \times 10^{-3} - 0.04$
Event Rate (yr^{-1}) in aLIGO	0.4 - 400	0.2 - 300	2 - 4000
Event Rate (yr^{-1}) in ET	$O(10^3 - 10^7)$	$\mathcal{O}(10^3 10^7)$	$\mathcal{O}(10^4 10^8)$

More Results...

A case with higher BH spin...

$m_1 = 4.84 \, M_\odot \quad \chi_1 = 0.80$ $m_2 = 1.35 \, M_\odot \quad Z = 0.03$

