Discovery of a low-energy spectral breaks in prompt GRB spectra

LARA NAVA INAF - Osservatorio Astronomico di Brera, Merate, Italy

GIANCARLO GHIRLANDA

INAF - Osservatorio Astronomico di Brera, Merate, Italy

ANNALISA CELOTTI SISSA, Trieste, Italy

most prompt spectra, in the literature, are not consistent with fast cooling synchrotron spectrum

 $\alpha \sim -1 \qquad \beta \sim -2.5$

-3/2

2nd Fermi catalog

Light curve examples

DISTRIBUTION OF PEAK/BREAK ENERGIES

A spectral break is found for 67% of time-resolved spectra

MAIN FINDINGS OF THE TIME-RESOLVED SPECTROSCOPY

- Large sample (34 GRBs): presence of breaks is confirmed, analysis in progress
- A spectral break at soft X-rays is found for more than 50% of spectra
- Photon indices are consistent with synchrotron radiation scenario
- The typical ratio is $\frac{E_{peak}}{E_{break}}\sim 30$. This regime ('moderately fast cooling') has been considered

before as a solution for the synchrotron line of death problem.

- We gave the first time observational evidence in support of this scenario

Submitted to ApJ

DISCOVERY OF LOW-ENERGY BREAKS IN GAMMA-RAY BURST PROMPT EMISSION SPECTRA

Gor Oganesyan,¹ Lara Nava,^{2, 3, 4, 5} Giancarlo Ghirlanda,⁴ and Annalisa Celotti^{1, 3, 4}

¹SISSA, via Bonomea 265, I-34136 Trieste, Italy
²Dipartimento di Fisica, Università di Trieste, via Valerio 2, I-34127 Trieste, Italy
³INFN - Sezione di Trieste, via Valerio 2, I-34127 Trieste, Italy
⁴INAF - Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (LC), Italy
⁵INAF - Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, I-34143 Trieste, Italy

Thank you!

THE MICROPHYSICAL PARAMETERS OF MARGINALLY FAST COOLING SYNCHROTRON REGIME

$$\nu_c \sim \nu_m$$

- $\Gamma \geq 300$ large bulk Lorentz factors
- $B \sim 10~G~$ weak magnetic fields
- $R\geq 3 imes 10^{16}~cm~$ large radii (excludes wind-like solutions for the ISM) $\gamma_m\sim 10^5~$ only small fraction of electrons should be accelerated

Beniamini & Piran (2013)

F. Daigne et al (2011)

- I Searching for X-ray emission episodes
- II Searching for signal in BAT

X-RAY LIGHT CURVE WITH EMISSION EPISODES

+

BAT/SWIFT DATA SHOULD HAVE SIGNIFICANT SIGNAL WITHIN WT/XRT/SWIFT OBSERVATIONS

=

77/1000 SWIFT GRBs

III Time-binning

S/N in BAT 15-150 keV light curve >30

+

at least 4 time-bins

= 14 GRBs (1000)

FINAL SAMPLE

Fermi/GBM data in 7 GRBs

Redshift in 8 cases (0.73-2.73)

Pile-up correction

< 150 cts/s

N_H

The Tuebingen-Boulder ISM absorption model

the photoionization cross-section Verneret. al. (1996 Ap.J.)

ISM abundances Wilms, Allen and McCray (2000, ApJ 542, 914)

found by spectra of late-time X-ray emission

10³ 10³ $\chi^2({\rm dof})\,{=}\,508.\,18(479)$ $\chi^2({\rm dof})\,{=}\,438.\,54(477)$ 10² 10² ${\rm EF}_{\rm E} \, [{\rm keV} \, {\rm s}^{-1} \, {\rm cm}^{-2}]$ $\mathrm{EF_E} \left[\mathrm{keV} \, \mathrm{s}^{-1} \, \mathrm{cm}^{-2} \right]$ 10¹ 10⁰ 10-1 10⁻¹ Residuals Residuals 2 0 10^{2} Energy [keV] 10⁰ 10¹ 10^{2} Energy [keV] 10³ 10⁰ 104 104 10¹ 10³

 N_{H}

N_{H}

Rate [cts/s]	PL	CPL	BPL	BCPL	$\mathrm{F}_{\mathrm{PL}-\mathrm{BPL}}$	$\mathrm{F}_{\mathrm{CPL}-\mathrm{BCPL}}$
120	412.97 (228)	243.89 (227)	217.09 (226)	210.95(225)	1.11e-16 (8.4)	8.14e-08 (5.4)
90	264.89(220)	224.17(219)	216.90(218)	211.05(217)	3.45e-10 (6.3)	1.44e-03 (3.2)
70	253.40 (218)	218.80 (217)	213.14 (216)	207.45 (215)	7.67e-09 (5.8)	3.26e-03 (2.9)

THE BEST FIT MODEL SEARCH

WHAT ABOUT BB COMPONENTS?

CAN WE GO TO EVEN HARDER SPECTRA?

2nd Fermi catalog

WHAT ABOUT BB COMPONENTS?

