

cherenkov telescope array

The Cherenkov Telescope Array and its potential for GRB observations

Michael Prouza for the CTA Consortium

Institute of Physics Czech Academy of Sciences, Prague

GRBs: Multi-wavelength observations

- afterglows: minutes to days after prompt gamma emission, observed across EM spectrum
- X-ray for all GRBs, optical/radio ~ 50 % (possibly just quick decay for rest)
- Gamma-ray Burst Coordinates Network: real-time dissemination of GRB triggers within seconds; robotic telescopes automatically + large telescopes manually

- >150 follow-ups with redshifts determined

Fermi: GRBs at highest energies

 Fermi: Gamma-ray Burst Monitor (GBM) 8 keV to 40 MeV (all-sky) + Large Area Telescope (LAT) 20 MeV to ~ 300 GeV (20 % of the sky)

- GBM: 250 GRB/year, LAT 9/year @100 MeV 5/year @1 GeV,

GRBs in GeV gamma rays

- max photon E observed 95 GeV (130427A)

– only about ~ 10 % of GBM triggers in LAT field of view detected, only 1 % with signal above 10 GeV

- GeV emission delayed (MeV) с counts/bir 10 by seconds, persistent to 10³ 10² 10³ the afterglow phase up 10 15 Time since GBM T₀ (s) to 1000 s (a) -0.1 to 4.5 s: SBPL - 30 GeV emission (b) 4.5 to 11.5 s: PL 10-5 a (c) 11.5 to 33.0 s: SBPL+PL observed up to $z \sim 1$ ${}^{_{\mathcal{F}}}_{_{\mathcal{V}}}$ (erg cm $^{-2}$ s $^{-1}$) b **GRB 130427A** 10-6 – upper: GBM curve vs. LAT single hits - lower: fitted spectra at 10-7 different times 10^1 10^{6} 10^{7} 10^{8} 10² 10^{3} 10^{4} 10⁵ Energy (keV)

Fermi-LAT and Fermi-GBM coll. Science 343, 6166, pp. 42-47

cherenkov telescope array

GeV observation prospects: IACT

- Fermi-LAT (like any satellite) limited in photons statistics at >10 GeV energies

 – all current major ground IACT (Imaging Atmospheric Cherenkov Telescopes) observatories regularly attempt follow-ups, only limits obtained so far

- MAGIC 68 GRBs (2004-2015)
- VERITAS 50 GRBs (2006–2010)
 V. Acciari et al., ApJ 743:62, 2011
- H.E.S.S 39 GRBs (2003–2008)
 A&A 495:2 (2009) pp. 505-512
 + more 2014–2015

A. Carosi et al. for MAGIC coll. ICRC2015 (809)

GeV observation prospects: HAWC

 High-Altitude Water Cherenkov Gamma-Ray Observatory (HAWC) in Mexico: all-sky coverage, effective area falls rapidly below 1 TeV

- 130427A should be detectable
- up to ~ 1 GRB/year expected, can provide (very bright) triggers

more sensitive, fast-responding detector in >10 GeV range needed

- Cherenkov Telescope Array

D. Zaborov for HAWC coll., arXiv: 1303.1564

Cherenkov Telescope Array

- 3 sizes of telescopes (Large, Medium and Small: LST, MST, SST)
- 2 sites: North: La Palma (Canary Islands),
 South: Paranal (Chile)
- operation from 2021, full array 2024
- large international collaboration (32 countries)
- 20 GeV to 300 TeV, best sensitivity
- slew times <20 seconds, automatic response to alerts

CTA GRB observations

 – GRBs part of "Transients" Key Science Project

 – expected ~12 real-time triggers/year/ site to be followed + ~ 1/year/site late follow-up

detection ~ 1 GRB/yr/site with >100
 photons above 30 GeV expected

 up to 10 possible, depending on GRB properties and EBL

energy E (TeV)

(EBL = Extragalactic Background light: attenuation of gamma photons by e^+/e^- pair production)

possible serendipitous
 observation during surveys
 (order of 1 during lifetime)

CTA Large Size Telescopes

- low-energy range key for GRBs
- 4 per site
- 23 m diameter, 45 m tall, 100 t
- within 20 seconds anywhere
- prototype construction on La
 Palma already started

Science goals with CTA GRB observations

– determining the velocity of the jet and location of the emission site via intrinsic $\gamma\gamma$ absorption features and short timescale variability

 determining the mechanisms of particle acceleration and radiation for the prompt emission via time-resolved, broadband spectra

M. Ackermann et al., Fermi Collaboration, ApJ 729 (2011) 114

Science goals with CTA GRB observations

 determining the mechanisms of particle acceleration and radiation for the early afterglow emission

- testing the GRB origin of UHECRs by revealing hadronic gamma-ray signatures in time-resolved spectra,

Science goals with CTA GRB observations

– clarifying the global evolution of stars and supermassive black holes (SMBHs) in the universe via $\gamma\gamma$ attenuation features due to the EBL over a large range of redshifts, potentially beyond the reach of active galactic nuclei (AGN) at z > 2

 testing Lorentz invariance violation (LIV) with high precision via energy dependence of photon arrival times.

E. Dwek, F. Krennrich, Astroparticle Physics 43 (2013), pp. 112–133