Testing Isotropic Universe Using the Gamma-Ray Burst Data and Discussion of GRB Classes

EWASS, Praha, June 27, 2017

Introduction

- Various observations claimed the existence of large-scale structures in the Universe of sizes of several hundreds of Mpc or even beyond one Gpc, for example:
- Sloan Great Wall of galaxies ~ 420 Mpc (Gott et al. 2005).
- VLA Sky Survey suggested a 140 Mpc empty void (Rudnick et al. 2007).
- Huge Large Quasar Group: longest dimension ~1.2 Gpc at mean z = 1.27 (Clowes et al. 2013).
- Concerning Gamma-Ray Bursts (GRBs) initially they had been claimed to be distributed isotropically on the sky (Meegan et al. 1992; Briggs et al. 1996).
- Later works indicated that their sky distribution may have some level of anisotropy (Balázs et al. 1998, 1999; Mészáros et al. 2000a,b; Magliocchetti et al. 2003; Mészáros & Štoček (2003); Vavrek et al. 2008; Veres et al. 2010; Tarnopolski 2015).
- Recently, Horváth et al. (2014) and Horváth et al. (2015) claimed that there is a signicant clustering of GRBs at redshift 1.6 < z ≤ 2.1 and size ~ 2.0 3.0 Gpc: "Hercules-Corona Borealis Great Wall".
- However, Ukwatta & Wozniak (2016) claimed that their analysis did not provide evidence of such signicant clustering.
- Recently, Balázs et al. (2015) reported a giant ring-like clustering with a diameter of 1.7 Gpc, displayed by 9 GRBs at redshift z ~ 0.8.
- All these GRB studies test the isotropy using the distribution of the number density.

Data Sample

- We propose an approach to test the isotropy of the Universe through inspecting the isotropy of the properties of GRBs <u>arXiv:1706.03556</u>.
- We used data from the **Gamma-ray Burst Monitor (GBM)** (Meegan et al. 2009) of the **Fermi satellite** (Atwood & GLAST Collaboration 1994).
- Specifically we used the **Fermi GBM Burst Catalog (FERMIGBRST)** (Gruber et al. 2014, von Kienlin et al. 2014, Narayana Bhat et al. 2016).
- A sample containing 1591 GRBs with following observables is used:
 - GRB position in Galactic coordinates I, b (°)
 - Duration T₉₀ (s) in range (50 300) keV
 - Peak fluxes F₆₄, F₂₅₆ and F₁₀₂₄ (ph.cm⁻².s⁻¹) at 64-ms, 256-ms, 1024-ms timescales and in energy range (10 1000) keV
 - Peak fluxes F_{64,B}, F_{256,B} and F_{1024,B} (ph.cm⁻².s⁻¹) at 64-ms, 256-ms, 1024-ms timescales and in the BATSE standard energy band (50 - 300) keV
 - Fluence S (erg.cm⁻²) in the energy range (10 - 1000) keV
 - Fluence S_B (erg.cm⁻²) in the BATSE standard energy band (50 300) keV

Method

1) Generate 1000 patches of a radius r randomly distributed on the sky.

Red curve is boundary of a random example patch.

2) For each patch and the whole sky compare the distributions of the given GRB property by calculating several test statistics ξ = D (Kolmogorov-Smirnov), V (Kuiper), AD (Anderson-Darling), or χ² (two-sample Chi square).

Method

- 3) This gives, for each test statistic, a distribution of 1000 values of ξ^m (index m = measured data).
- **4)** Next we **randomly shuffle** the measured data sample (100x). We keep the coordinates I_i, b_i of each measurement and we randomly shuffle the values of the measured GRB properties.
- 5) For each patch and the whole sky compare the distributions of the given GRB property in the shuffled data by calculating the test statistics **ξ**.
- 6) This gives, for each test statistic and each sky patch, a distribution of 100 values of ξ^s (index s = shuffled data).
- 7) For a given statistic ξ we derive the limiting values ξ^s_i which delimit the highest i=10, 5, 1, 0.1 % of all ξ^s values from all patches in all randomly shuffled data.

8) Count the number of patches N^m_i in the measured data for which $\xi^m > \xi^s_i$.

Method

- 9) The mean number of patches $\overline{N_i^s}$ in the randomly shuffled data for which $\xi^s > \xi_i^s$ is $\overline{N_i^s} = 100, 50, 10,$ and 1 for i = 10, 5, 1, and 0.1.
- **10)** If we find $N_{i}^{m} \gg \overline{N}_{i}^{s}$ for a given i, it could **indicate anisotropy** in the measured data.
- 11) Next we calculate the probability P_i^N of finding at least N_i^m number of patches with $\xi^s > \xi_i^s$ in the randomly shuffled data.

 ξ = D, i=1 and 100 data shufflings.

- **12)** Perform all steps for various patch radii $r = 20^{\circ}$, 30° , 40° , 50° , 60° , for all GRB properties in our sample and for all test statistics $\xi = D$, V, AD, or χ^2 .
- **13)** For some observables and patch radii where we obtained $P_{i}^{N} < 5$ % we repeated the whole process with more data shufflings (1000x).

Results

Plotted are the patch centers (Galactic Coordinates), for which the statistical properties of GRBs are mostly deviated from the randomness. That is the patches for which a given statistic ξ^m, for the measured data, is higher than ξ^s_i and the significance P^N_i ≤ 5 %.

Results

Plotted are the patch centers (Galactic Coordinates), for which the statistical properties of GRBs are mostly deviated from the randomness. That is the patches for which a given statistic ξ^m, for the measured data, is higher than ξ^s_i and the significance P^N_i ≤ 5 %.

Results

• The distributions of the peak fuxes and fuence obtained for the whole sky and for the patch at the center I = 28.6°, b = 16.9° and radius r = 20°.

Future prospect - testing isotropy for separate GRB groups

In work by <u>Řípa & Mészáros 2016, Ap&SS, 361, 370</u> relation of GRBs and X-ray flashes (XRFs) for separate groups of bursts with respect to duration and hardness ratio in the BATSE and RHESSI datasets are discussed.

The hardness ratio $H_{21,CURR}$ vs. T_{90} durations of 1932 BATSE bursts with identified group of short (*crosses*), intermediate (*full circles*), long bursts (*open circles*), and ones without assigned group-membership (*triangles*). The *horizontal solid line* is the XRF limit. The *objects above this line* are not classified as XRFs; the *objects below this line* are classified as XRFs.

Řípa & Mészáros 2016, Ap&SS, 361, 370

• Testing of isotropy can be done for separate GRB groups as well.

Conclusions

- We proposed a new method to test the isotropy of the Universe by testing the observed properties of GRBs from large datasets.
- We applied the method on the *Fermi* / GBM data sample with 1591 GRBs.
- Our results hints towards a probable anomaly near the Galactic coordinates l ≈ 30°, b ≈ 17° and radius r ≈ 20° 40°.
- The inferred probability for the occurrence of such an anisotropic signal (in a random isotropic sample) was derived to be less than 1%.
- However, we noticed a considerably low number of GRBs in this particular patch which might be due to some instrumentation or observational effects that can consequently affect our statistics.
- Further investigation is highly desirable to confirm or reject this result, e.g. using a larger *Fermi* / GBM data sample and data samples of other GRB missions and also looking for possible systematics.