Analysis of gamma-ray burst duration distribution using mixtures of skewed distributions

Mariusz Tarnopolski

Astronomical Observatory; Faculty of Physics, Astronomy and Applied Computer Science

Overview	Distributions		
Context. Observed distributions of gamma-ray burst (GRB) durations (denoted T_{90}) have been thus far modeled with standard Gaussians only. The introduction of a third—intermediate—class of GRBs (besides short and long) was made based on such modeling, but its physical machanism remains unknown. Moreover, the data sets gathered by <i>Fermi/GBM</i> , <i>CGRO/BATSE</i> , and <i>Swift/BAT</i> are all bimodal, hence the existence of a third class is uncertain. Results. It is found [1] that a 2-component mixture of skewed distributions is a better description of the data than a 3-Gaussian; this provides a much simpler explanation that does not require to introduce another physical phenomenon. Hence, the third class is not necessary. The asymmetry might come from a non-symmetric distribution of the envelope masses of the progenitors of the long CPRs [2]	 The following distributions are used, with p being the number of free parameters in a mixture of k components: Standard Gaussian (G) with p = 3k - 1 parameters. It is symmetric (non-skewed). Skew-normal (SN) distribution with p = 4k - 1 parameters [3, 4]. Its skewness is limited to the interval (-1, 1). Sinh-arcsinh (SAS) distribution with p = 5k - 1 parameters [5]. Its kurtosis also can be varied. Alpha-skew normal (ASN) distribution with p = 4k - 1 parameters [6]. Its skewness is limited to the interval (-0.811, 0.811). Depending on the value of the parameter governing the skewness, the ASN distribution can be unimodal or bimodal 	Gaussian Gaussian Sinh-arcsinh (SAS)	Skew-normal (SN) Alpha-skew normal (ASN)
GRDS [2].			

AIC [7] is employed as it can be applied to non-nested models (which is the case here; comparison of log-likelihoods \mathcal{L} can be done for nested models only). It is given by

$$AIC = 2p - 2\mathcal{L}$$

where *p* is the number of parameters. The best model among the examined ones is that with the lowest AIC, denoted AIC_{\min} .

 $Pr_i = \exp\left(-\frac{\Delta_i}{2}\right)$

One compares the differences $\Delta_i = AIC_i - AIC_{\min}$.

These are related to the relative probability that the

i-th model minimizes AIC via:

Rules of thumb [8]:

• $\Delta_i < 2$, then there is substantial support for the *i*-th model

(or the evidence against it is worth only a bare mention);

• $2 < \Delta_i < 4$, then there is strong support for the *i*-th model;

• 4 < Δ_i < 7, there is considerably less support;

• models with $\Delta_i > 10$ have essentially no support.

Results [1]

The following mixtures of distributions are examined: a two- and three-component Gaussian (2-G and 3-G), a two- and three-SN (2-SN and 3-SN), a two- and three-SAS (2-SAS and 3-SAS), a one-, twoand three-ASN (1-ASN, 2-ASN and 3-ASN), for each of the three examined data sets. The models are evaluated based on their AIC (bottom pictures). The relative probabilities are also displayed.

Fermi (1596 GRBs)

BATSE (2041 GRBs)

Swift (914 GRBs)

• Best model: 2-SN (p = 7)• 2-SAS (p = 9; Pr = 37.7% and $\Delta_i = 1.953$) • 3-G (p = 8; Pr = 21% and $\Delta_i = 3.119$)

• 3-G(p=8)• 2-SAS (p = 9; Pr = 57.9% and $\Delta_i = 1.091$) • 2-ASN (p = 7; Pr = 21.7% and $\Delta_i = 3.054$) • 3-G(p=8)• 2-SN (p = 7; Pr = 63.2% and $\Delta_i = 1.040$) • 2-SAS (p = 9; Pr = 35.4% and $\Delta_i = 2.077$)

Conclusions

Skewed distributions with 2 components describe the observed T_{90} data better (*Fermi*) or at least as good (BATSE, *Swift*) as a mixture of 3 standard Gaussians. Therefore, there is no need to introduce a third, intermediate in duration, class of GRBs. Additionally, similar conclusions were drawn for a sample of GRBs with measured redshifts [9, 10].

Bibliography		
 [1] Tarnopolski M., MNRAS, 458, 2024 (2016) [2] Zitouni et al., ApSS, 357:7 (2015) [3] O'Hagan A. & Leonard T., Biometrika, 63, 201 (1976) 	 [4] Azzalini A., Scand. J. Statist., 12, 171 (1985) [5] Jones M. C. & Pewsey A., Biometrika, 96, 761 (2009) [6] Elal-Olivero D., Proyecciones J. Math., 29, 224 (2010) [7] Akaike H., IEEE Transactions on Automatic Control, 19, 716 (1974) 	 [8] Burnham K. P. & Anderson D. R., Socio. Meth. Res., 33, 261 (2004) [9] Tarnopolski M., ApSS, 361:125 (2016) [10] Tarnopolski M., New Astron., 46, 54 (2016)

http://www.oa.uj.edu.pl/M.Tarnopolski

mariusz.tarnopolski@doctoral.uj.edu.pl