EWASS 2017 | European Week of Astronomy and Space Science Prague: June 26-30th, 2016

The metallicity dependence of WR winds

Rainer Hainich

Institute of Physics and Astronomy University of Potsdam

Wolf Rayet Stars (WR)

- evolved massive stars \rightarrow initial masses $> 20 M_{\odot}$
- dense and fast stellar winds (up to $\approx 5000\, km/s)$
- strong mass loss $(10^{-5} M_{\odot}/\mathrm{yr} \,\widehat{=}\, 10^9 \,\dot{M}_{\odot})$
- spectra with strong broad emission lines
 - helium and nitrogen
 ⇒ WN sequence
 - carbon and helium
 - \Rightarrow WC sequence

WR6 - Credit: J. Toala et al. (2012)

WR populations: the effect of the metallicity

WR populations:

- properties change depending on the environment
 - WC/WN ratio
 - sub-type distribution
 - spectral characteristic

WR populations: the effect of the metallicity

Sample

Andromeda Galaxy

Palomar STScI DSS

- $Z \approx Z_{\odot}$
- 92 WN stars known
- WNL stars analyzed
- analysis of the WNE is under way

Sander et al. (2013); Hainich et al. (in prep.)

Large Magellanic Cloud Small Magella

Magellanic Cloud Emission-Line Survey (Smith et al. 2005)

- $Z \approx 1/2 Z_{\odot}$
- nearly complete WN population
- single stars analyzed
- analysis of the binaries is under way Hainich et al. (2014); Shenar et al. (in prep.)

Small Magellanic Cloud

Magellanic Cloud Emission-Line Survey (Smith et al. 2005)

- $Z pprox 1/4 1/7 \, Z_\odot$
- complete WN population
 - 7 single WN stars
 - 4 binary systems

Hainich et al. (2015); Shenar et al. (2016)

R. Hainich

The metallicity dependence of WR winds

PoWR

Potsdam Wolf-Rayet model code for expanding stellar atmospheres

- non-LTE population numbers
- radiative transfer in co-moving frame
- complex model atoms
 (H, He, C, N, O, Ne, Mg, Al, Si, P, S, Ar, ...)
- self-consistent treatment of the quasi-hydrostatic regime
- iron-line blanketing (super-level approach)
- wind inhomogeneities (micro-clumping)
- usable for any hot star (WR, O, B, LBV, CSPN, ...)

PoWR models: www.astro.physik.uni-potsdam.de/PoWR

PoWR - The Potsdam Wolf-Rayet Models

This WEB interface allows to inspect and download synthetic spectra for Wolf-Rayet and OB stars. The spectra are calculated from PoWR model atmospheres which account for Non-LTE, spherical expansion and metal line blanketing.

Model atmospheres and synthetic spectra

The following data is available for each model:

- Spectral Energy Distribution (emergent flux received at 10pc distance, low spectral resolution)
- Line spectrum in high resolution for different wavelength bands (optionally normalized or flux-calibrated)
- Atmosphere stratification (incl. electron temperature, density, optical depth, etc.)
- · Colors and ionizing photons

Model parameters and organisation

The models are arranged in different *Model Grids*. Each model grid is characterized by a set of common parameters, such as stelar luminosity, terminal wind velocity, clumping contrast, and chemical composition. For Wolf-Rayet stars of the nirogen subclass (WN) there are grids of hydrogen-free models (WNE) and of models with a specified mass fraction of hydrogen (WNL). The rior-group and total CNO mass fractions or prospont to the metallicity of the Galaxy, the Large Magelanic Cloud (LMC), or the Small Magellanic Cloud (SMC).

Wolf-Rayet model grids

		log L	V _{final}	D _{max}	Х _Н	\mathbf{X}_{He}	xc	XN	xo	X _{Ne}	X _{Fe}
[L _{sun}] [km/s]							ma	iss frac			
Galactic Metallicity											
WNE	Details	5.3	1600	4	-	0.98	1.0E-4	0.015	-	-	1.4E-3
WNL-H20	Details	5.3	1000	4	0.2	0.78	1.0E-4	0.015	-	-	1.4E-3
WNL-H50	Details	5.3	1000	4	0.5	0.48	1.0E-4	0.015	-	-	1.4E-3
WC	Details	5.3	2000	10	-	0.55	0.4	-	0.05	-	1.6E-3
LMC Metallicity											
WNE	Details	5.3	1600	10	-	0.995	7.0E-5	4.0E-3	-		7.0E-4
WNL-H20	Details	5.3	1600	10	0.2	0.795	7.0E-5	4.0E-3	2	-	7.0E-4

WR model grids

OB model grids

How to cite the grids and models

PoWR code descriptions

- Gräfener, Koesterke, & Hamann: 2002, A&A 387, 244 (ADS)
- Hamann & Gräfener: 2003, A&A 410, 993 (ADS)
- Sander, Shenar, Hainich, Gímenez-García, Todt, & Hamann: 2015, A&A 577, A13 (ADS)

WN model grids

- <u>Hamann & Gräfener: 2004</u>, A&A 427, 697 (ADS)
- Todt, Sander, Hainich, Hamann, Quade, & Shenar: 2015, A&A 579, A75 (ADS)

WC model grid

 Sander, Hamann, & Todt: 2012, A&A 540, A144 (ADS) Analysis

WN stars: Spectral characteristics at different Z

Spectral analysis

For each individual star find one model atmosphere which:

- reproduces the whole line spectrum & spectral energy distribution
- \Rightarrow comprehensive set of stellar parameters $T_*, L, \dot{M}, v_{\infty}, ...$

Analysis

WN stars: Spectral characteristics at different Z

Spectral analysis

For each individual star find one model atmosphere which:

- reproduces the whole line spectrum & spectral energy distribution
- \Rightarrow comprehensive set of stellar parameters $T_*, L, \dot{M}, v_{\infty}, ...$

Analysis

WN stars: Spectral characteristics at different Z

Spectral analysis

For each individual star find one model atmosphere which:

- reproduces the whole line spectrum & spectral energy distribution
- \Rightarrow comprehensive set of stellar parameters $T_*, L, \dot{M}, v_{\infty}, ...$

Modified wind momentum:

•
$$D_{\rm mom} = \dot{M} v_{\infty} R_*^{1/2}$$

•
$$\dot{M} \propto Z^{\alpha} \Rightarrow D_{\rm mom} \propto Z^{\alpha}$$

Modified wind momentum:

•
$$D_{\rm mom} = \dot{M} v_{\infty} R_*^{1/2}$$

•
$$\dot{M} \propto Z^{\alpha} \Rightarrow D_{\rm mom} \propto Z^{\alpha}$$

8 / 13

Modified wind momentum:

•
$$D_{\rm mom} = \dot{M} v_{\infty} R_*^{1/2}$$

•
$$\dot{M} \propto Z^{\alpha} \Rightarrow D_{\rm mom} \propto Z^{\alpha}$$

\dot{M} -Z relation for WN stars

Mass-loss rate metallicity relation: $\dot{M} \propto Z^{\alpha}$

lpha= 1.2 \pm 0.1

Hainich et al. (2015)

Low Z environments:

- less angular momentum loss
- higher SN progenitor masses
 ⇒ larger black holes

Galactic metallicity gradient

Gradient of the $X_{\rm Fe}$ abundance:

Galactic metallicity gradient

Gradient of the $X_{\rm Fe}$ abundance:

\dot{M} - $X_{\rm Fe}$ relation

The metallicity dependence of WR winds

Andromeda Galaxy:

 very luminous WN stars are missing in M 31

Andromeda Galaxy:

- very luminous WN stars are missing in M 31
- $\langle D_{mom} \rangle$ lower than in the MW
- H II regions: super-solar X_O
 - $X_{\rm O}/X_{{\rm O},\odot} \approx 1...2$ (Sanders+ 2012, Zurita+ 2012)

•
$$X_{
m Fe}/X_{
m Fe,\odot} pprox 1$$

(Venn+ 2000, Chen+ 2016)

Andromeda Galaxy:

- very luminous WN stars are missing in M 31
 - $\langle D_{
 m mom}
 angle$ lower than in the MW
- H II regions: super-solar X_O
 - $X_{\rm O}/X_{{\rm O},\odot} \approx 1...2$ (Sanders+ 2012, Zurita+ 2012)

•
$$X_{
m Fe}/X_{
m Fe,\odot} \approx 1$$

(Venn+ 2000, Chen+ 2016)

Spectral analysis reveals characteristic differences between the WN populations in M 31 and the MW $\,$

Summary:

Sample

- WN populations in M 31, SMC, & LMC analyzed
 - all together more than 200 objects

Metallicity dependence of the WN winds

• stronger dependence on metallicity and iron abundance than expected: 12 12 12 12 12 12 12 15

•
$$M \propto Z^{1.2}$$
 & $M \propto X_{
m Fe}^{1.5}$

implications: less angular momentum loss and potentially higher BH masses at low metallicities

Outlook

- corroboration by atmosphere models that account for hydrodynamics \rightarrow talk by Andreas Sander