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Summary. The transfer of radiation in an isotropic,
refractive and dispersive medium in a curved spacetime
is studied by applying the general-relativistic kinetic
theory.

Relativistic geometric optics in a dispersive medium is
first analyzed; we study in particular the change of
frequency along the ray and the change of the direction
of propagation as observed in the local rest frame of
the medium. The general-relativistic kinetic theory
(as formulated, e.g., by Ehlers) is then shown to be
extendable to photons in a dispersive medium. Assuming
that the radiation only undergoes continuous refraction
and dispersion, the law of change of specific intensity
along the ray can be obtained easily. The transfer of

black-body radiation, the propagation of radiation in a
cold plasma in the Friedmann universe, and the deri-
vation of the explicit form of the transfer equation in
a spherically symmetric, non-stationary dispersive
medium (the generalization of Lindquist’s equation)
are discussed as examples.

Some astrophysical situations in which both refractive
and dispersive effects of a medium, and the effects of
the gravitational field on the radiation, can be important,
are indicated.

Key words: radiative transfer — dispersive medium —
general relativity

1. Introduction

Consider a plasma cloud in the vicinity of a black
hole and electromagnetic waves propagating through
the cloud. The waves can be generated by radiating
matter, placed near the event horizon inside the cloud
or by the primary in a double system the secondary
of which is a black hole or, alternatively, by a distant
quasar emitting radio waves which are then focussed
by a large black hole surrounded by an accreting plasma
in the nucleus of a galaxy. In all such cases refractive
and dispersive effects of matter and, simultaneously,
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of general-relativistic radiative transfer in dispersive media. Their
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the effects of the curvature of spacetime due to the black
hole may be important. Furthermore, as demonstrated
recently (Virtaho and Jauho, 1973; see also Lerche, 1974),
the refraction of radio rays in a pulsar magnetosphere
may have remarkable consequences on the beaming
of the radiation. For neutron stars with radii as small
as ~1.6 times the gravitational radius, the curvature
can have important effects not only on the structure
of the star, but also on the radiation in the magneto-
sphere (cf. Cohen and Rosenblum, 1973).

The purpose of this paper is to take the first steps in
a rigorous treatment of the problems indicated above,
provided the geometric optics approximation is ap-
plicable. We consider the propagation of radiation in
a general, isotropic, refractive and dispersive medium
(not necessarily a plasma) in curved spacetime. The
medium is assumed to be described by the index of
refraction and by the four-velocity field.

The only extant comprehensive survey of general-
relativistic geometric optics in an isotropic dispersive
medium is given in the last chapter of Synge’s book
(Synge, 1960). It is based on the elegant abstract
Hamiltonian theory of rays and waves without, however,
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being much concerned with the physical interpretation
of the formalism. In Section 2, after summarizing the
basic results of Synge in a slightly more physical way,
we analyze in detail the photon propagation from the
point of view of observers at rest in a dispersive medium.
Our expressions for the change of frequency along a
ray and of the change of direction of propagation,
as seen by comoving observers, extend those given,
for example, by Novikov and Thorne (1973) for non-
refractive and non-dispersive media in general relativity;
furthermore, they generalize the classical results (see,
e.g., Pomraning, 1973) for a dispersive medium at rest
in an inertial frame of special relativity. [It appears

that moving dispersive media, in general with expansion, .

shear and rotation, have not been treated in this respect
even in special relativity, except for the very recent
papers by Lerche (1974), who considers plane, dif-
ferentially sheared media.]

Since there exists'a 4-dimensional Hamiltonian de-
scription of rays in dispersive media, it is possible to
study “phenomenological” photons in such media
within the rigorous framework of general-relativistic
kinetic theory as summarized in reviews by Ehlers
(1971, 1973) and by others. Section III is devoted to the
extension of kinetic theory to such photons. In particular,
we obtain the relation according to which the specific
intensity changes along the ray, provided the radiation
(except for known relativistic effects) undergoes con-
tinuous refraction and dispersion in a medium; we
then write the transfer equation, when other interactions
with the medium also take place.

[Specializing to a dispersive medium at rest in flat
spacetime, we easily find the explicit form of the “stream-
ing terms” in the transfer equation which, for a general
space-, time- and frequency-dependent refractive index
appear to have been first derived only by Pomraning
(1973) with the use of a somewhat lengthy vector
calculus.]

Three illustrative examples are given in Section IV: the
propagation of black-body radiation in a transparent
dispersive medium in curved spacetime; the transfer
of radiation in a dispersive medium which is at rest
with respect to the fundamental observers in the
Friedmann universe; and the explicit form of the
transfer equation in a spherically symmetric non-
stationary (e.g., collapsing) dispersive medium are
derived thus generalizing the equation of Lindquist
(1966).

A few concluding remarks are added in the last section.

I1. Relativistic Geometric Optics in a Dispersive
Medium

A rigorous transition to relativistic geometric optics
from the covariantly generalized Maxwell equations
was studied systematically by Ehlers (1967). Ehlers
considered non-dispersive isotropic media, but, on

v=—h"lp-U=—=Q2n) " %k-U=—Q2n) 7o U.

physical grounds, it is plausible that relativistic geometric
optics should also represent an appropriate approxi-
mation in the case of dispersive (and even anisotropic)
media whenever the following conditions hold in the
instanteneous local Lorentz rest frame of the medium
for an arbitrary event in spacetime?):

a) the typical wavelength 4 of the waves is short compared
with the distances over which the properties of the
medium (the index of refraction, the velocity) vary;

b) 4 is short compared with the distances over which
the characteristics of the waves (the amplitude, wave-
length, polarization) vary, so that the waves are locally
monochromatic;

c) A is short compared with the characteristic radius
of curvature of the spacetime;

d) the properties of the medium change negligibly
over one period of a typical wave.

Under these conditions the waves can be described by
a rapidly changing, scalar function of position in
spacetime — the phase @(x*), so that a hypersurface
of constant phase, #=const, is associated with each
wave; multiplying by the reduced Planck constant, we
can equivalently use the function f(x*)=#h®(x*). Corre-
spondingly, two vectors normal to the waves, can be
introduced — the wave-vector

k=Vo, (2.1)
and the 4-momentum vector
p=Vf=hk. (22)

[Synge (1960) does not introduce the vector k and calls
the vector p the “frequency 4-vector”. The “4-momentum
vector” is used here because of-identifying p with the
4-momentum of a “phenomenological” photon — see
below.] »

Assume the motion of the medium to be described by a
unit timelike vector field U. An observer at rest in the
medium observes the frequency of the waves

(2.3)

(Henceforth, 4 - B=g,,4"B" denotes the scalar product
of 4-vectors A4, B.) Let the observer carry an orthonormal
triad {e,}(a=1,2,3) of spacelike vectors, orthogonal
to his worldline, i.e. to the 4-velocity U at each event
on the worldline. In the basis of the orthonormal
tetrad {e,, U},

U*=68%, v=h"'p°=(2n)"1k°. 24

1) For a physical description of the transition to geometric optics
in vacuum in curved spacetime, see also Misner et al. (1973). In case
of a general dispersive medium, a rigorous transition may not be
easy because the “optical metric” [see Eq. (2.21) in the following],
used to advantage by Ehlers, loses its significance. Electromagnetic
waves propagating in plasma in a curved spacetime were studied in
the eikonal approximation recently by Madore (1974). In nonrelativistic
physics the applicability of the geometric optics approximation was

analyzed from a broad viewpoint by Weinberg (1962). [See also
Pomraning (1973) and references therein.]
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Following the terminology of Novikov and Thorne
(1973) the frame of reference just described will be
called the local rest frame (LRF) of the medium. LRF is,
in general, an accelerated frame. At an arbitrary fixed
event we can also consider a freely falling observer,
with a local Lorentz frame (LLRF), with respect to
which the medium is momentarily at rest. [It is in the
LLRF that the metric is not only Minkowskian, but
also all the connection coefficients vanish. Of course,
at the event in question, (2.4) holds in the LLRF,
too.]

An arbitrary observer (not necessarily at rest in the
medium), having the 4-velocity U, sees the frequency of
the waves to be

y=—h"lp-U=—Q2n) %k -U=—Q2n) " ¥o-U.

The phase-velocity of the waves relative to an observer
is defined as the minimum value of the velocities of all
fictitious particles, riding on the waves, i.e. the particles
with world-lines lying on the hypersurface $(x*)=const.

As measured by an observer with 4-velocity U it is
given by the invariant formula (Synge, 1960)

1 L PP

2 (pr 0P

2.4)

which suggests a way of building up relativistic geometric
optics in an isotropic medium. As in classical physics,
we describe the medium by the index of refraction n

which is the reciprocal value of the phase-velocity of

the waves with respect to the medium. The refractive
index will be considered to be a given scalar function
of position in spacetime and of the frequency v measured
in the LRF or, equivalently, of either the invariant
p-U=—hv,or k- U=—2nv=—w (w is the “angular”
frequency). Thus, the general-relativistic geometric optics
in an isotropic dispersive medium can be based on the
medium-equation

k- k
(k-U)*’

pp
=1+

(p-UyY
in which n=n(x, p- U(x)) and the metric g=g(x) are

assumed to be given. In the LRF the medium-equation
reduces to the standard relation

n?=1+ (2.5)

n(x, w)= 2, (2.6)

£ being the magnitude of the ordinary wave 3-vector —the
“spatial” part of k in LRF. Covariantly,

#=k, -k, , where k =h-k 2.7
is the spacelike vector given by the contraction of k
with the projection tensor into the 3-space orthogonal
to U (the 3-space of the LRF);

h=g+U®U. (2.8)

The medium-equation can be solved for w to yield a
dispersion relation

o=, X). (2.9)

In order to be able to apply the Hamiltonian description
of the waves (see Synge, 1960 for details), we rewrite
the medium-equation in the form

H(x*,p,)=0, (2.10)
where
H(x*, p)= %5 [9"p.p,— (n*—1) (p,U°)?]. (2.11)

Note that the covariant components of p are considered
as fundamental in . Since p,=hod/0x*, Eq. (2.10)
is a partial differential equation for the phase. The
characteristic curves of this equation, called the rays,
obey the Hamiltonian equations

dx*  oH

- _ 2.12
o (2.122)
dp, oH

where w is a parameter. Starting from an arbitrary
event x with an initial momentum vector p [restricted
only by (2.5) at x], we can determine the ray x(w) and
the momentum vector along the ray by solving the
ordinary differential Egs. (2.12). Since

oH
op, .
the space-time direction of the tangent vector to the ray,

4 _avo _oro
dw  dw ox*  op, ox*’

p—m*-)(p- U)U“+h’1n%(p- U)*U*, (2.13)

(2.14)

does not, in general, coincide with that of p, however,
it lies in the 2-surface spanned by p and U. In particular,

. Y d .
in LRF the spatial direction of —is the same as of p;

dw
moreover, it is seen from (2.13) that
d
h T h-p. (2.15)

Since signals (information) are carried along the rays,

d . L
the vector%must be non-spacelike. Normalizing it
(if it is time-like) and projecting onto U, we obtain
(1-v%,)" "2, with o, being the magnitude of the
velocity of the ray, as observed by an observer having
the 4-velocity U. The expression for 72

ray>
OH OH [~ 0H\ 2

72 =1 - =

Pray= 1 F Gy Op, Op (U" 5p,>

” v
actually holds for an arbitrary character of the vector

, (2.16)

but 7,,<1 only if iwis non-spacelike, ie. if

aw’ d
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0K OH
9w op, op,
(2.15) [usmg (2.13) and (2.6)] that the ray-velocity. is
the group-velocity as known in classical physics?):

<0. Specializing to the LRF, we find from

)

ﬁ Ug,.
In particular, for waves with the frequency v propa-
gating in cold plasma with the plasma frequency
v,<v (see e.g. Bekefi, 1966), the refractive index is

given by

(2.17)

b= 5 )

n=(1-v»)'?, (2.18)
so that

vp=n"t=(1—V2/V}) 12, (2.19)
and

Vp=(1—viH?)2=n. (2.20)

What is the photon in the described formalism? Synge
writes: “In view of v=—h~'p,U*, it seems appropriate
to take the frequency vector p, to be the 4-momentum
of a photon associated with a system of waves, and
the history of a photon to be a ray.” Although this
view will be adopted in the following — we have called p
the momentum vector from the very beginning — it
should be mentioned that this interpretation is not
unique, if we want the 4-momentum of the “phe-
nomenological” photon to be derived from the quantum
theory of the electromagnetic field in a medium. To
start with, such a theory uses a classical expression for
the energy-momentum tensor of the field in the medium,
but (despite much discussion of this topic over many
years) no such unique expression seems to be generally
accepted. Muzikat (1956), among others, constructed
the Lorentz — covariant phenomenological quantum
theory of the electromagnetic field in a medium with
a constant refractive index and, indeed, he obtained
p=hk for the 4-momentum of the photon, having
used the Minkowski or the canonical energy-momentum
tensor. However, for the Abraham tensor, for example,
Muzikaf obtained the 4-momentum of a photon
proportional to the tangent vector to the ray. In this
paper we adhere to the relation p=#k not only because
the Minkowski tensor seems to be the most natural
[see, e.g, Schmutzer (1968), Mgller (1972) and in
particular, the most recent paper by Israel (1975) for
some concrete arguments in favour of the Minkowski
tensor] but, primarily, because if p=hk, then our
photons are identical with the photons (or “light
particles”) associated with wave packets in media
(plasmas in particular) at rest in an inertial frame in
the standard literature [see, e.g., Bekefi (1967), Chapter I

%) Note the misprints in Synge (1960): in Eq. (32), p. 378, g2 and g~ !
should be replaced by ¢* and g, and below (33), the relation v=g
should read v=q .

or Pomraning (1973), Chapter V]. (Notice, moreover,
that we could base the kinetic theory on the “k-space”
in any case and the “k-space” is trivially related to
the “p-space” provided that p=#hk.)

In contrast to the photon in vacuum, in a medium p
is neither tangent to the world-line of the photon,
nor parallel-transported along it. It is well-known,
however, that for non-dispersive media one can introduce
the “optical metric”

§=g+(1-n")USU,

with respect to which the photon-in-medium has the
same properties as the photon-in-vacuum: Eq. (2.10)
becomes

2.21)

3§"pp,=0, 2.22)
and the ray equations have the form

dx* '
= = g‘”pv (2.23a)
4P, (2.23b)

W=—79 uPiPy >

so that the rays are null geodesics with respect to the
optical metric.

Let us now analyze the propagation of a photon from
the point of view of observers at rest in the medium.
[See Ellis (1971) and Novikov and Thorne (1973) for
discussions of the photon propagation with respect to
observers at rest in a medium without refractive and
dispersive properties.] At each event along the ray we

can decompose both the tangent vector to the ray and

the 4-momentum vector into their projections on U
and into the 3-space orthogonal to U. Regarding (2.16)
(with U=0), (2.13), (2.14) and (2.17), we find

d oA
3= (- U5 o,

2.24

=nhw, (U +v,N), (2.24)
and using (2.10) with (2.11), we arrive at

p=(—p U)[U+nN]=hw(U +nN). (2.25)

Here N is the unit spacelike vector in the direction of

the projection h - % [=h- p by (2.15)]. In the LRF, it is

~ purely spatial (N-U=0) and it determines the spatial

oA
direction of propagation of the ray. Since dx*= a—dw,

a small increment dw in the parameter along th: ray
will be seen in the LRF to correspond to an interval dt
and a spatial distance dl, given as a consequence of
(2.24), by the invariant expressions

dt= ( U, Ei;}f) dw=nhvv,,'dw, (2.26)
on | ‘
dl= ( -U, 6_p,) Vg, dw=nhvdw=v,,dt . 2.27)
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Using the projection tensor (2.8) we can also write a
simple relation for the spatial projection of the tangent
to the ray

dx’
n
m dl
which in the LRF goes over into the classical form
dx*/dl=N%a=1,2,3).

The first covariant derivatives of the 4-velocity vector
of the medium can be decomposed at each event as
follows (see, e.g., Ellis, 1971): ‘

=N*, (2.28)

U, p=0,5+0,5+ 30h,5—a,Usg, (2.29)
;B B B B B

where a,= U, ,U” is the 4-acceleration of the medium,
0=U%, is the volume expansion of the medium,
W= 5 (MU, —hUp )= —w,, is the vorticity and
0,5= % (WU, +h.Up,)— 4 0h,;=0,, is the shear tensor
of the medium. (Let us recall that a,U*=w,U*=
0,U*=0)

The change in the frequency v with respect to observers
at rest in the medium occurring along the ray for an

increment dw of the parameter, is determined by

y
d(p,U%=(p, Uﬂ),,didw
dp X dx?f
= (L= _pop, S| U D —dw .
(dw asD: dw) Udw+ U, 4p Iw dw

Substituting for dxf/dw and dp,/dw from (2.12a) and
(2.12b), where (2.13) and

oA
pe =%g"” pp,—nn(p- Uy

(- U~ 1) (- )| U, 230)

are used, and decomposing U, according to (2.29),
we find

d(p,U)=(—p- U)[(6,4N*N? +40)n+a-N

+Vn- Ulnhvdw, (2.31)
or, in view of (2.27),
Z—;=—[(aa,,N“N”+%0)n+a-N+Vn~U]v. (232)

The first two terms, —(,,N*N?+ £ 0)nv, caused by
the expansion of the refractive medium along the
direction of propagation of the photon, represent the
“Doppler” or “cosmological” part of the redshift (2.32).
The third term, —(a - N)v, caused by the acceleration
of the medium (i.e. of the LRF) is the “gravitational
redshift” (it is the only term which does not depend on
the refractive index). The fourth term, —(Vn-U)y,
caused by the explicit dependence of the refractive
index on time in the LRF, may be called the “refractive

redshift”. If n=1, (2.32) reduces to the result given,
e.g., by Ellis (1971), or Novikov and Thorne (1973);

while for U const we obtamd— = —(Vn- U)y, which

dl

in the LLRF agrees with the relation % at

from classical physics (see Pomraning, 1973, Chap-
ter V).

An intuitive derivation of (2.32) in the very simple case
of a dispersive medium in the Friedmann universe will
be given in Section 4.

Next, we wish to find out how the direction of propa-
gation of a photon changes from the viewpoint of
observers at rest in the medium. For this purpose,
first calculate the absolute derivative of the 4-momentum
tor along th X7 _ Py _ g, 9X,
vector along the ray, pg,—— Tw = In BPo 7 use
(2.12a) and (2.12b) together with (2.13) and (2.30),
and substitute the decomposition of p as given by (2.25)
into the result obtained. In this way find [also con-
sidering (2.17)] that

, known

dx?
Pay o = (VP T = (0 =" YU, NT. (233)

d Y
Then calculate pm% starting out directly from (2.25)
and (2.31). By comparing the result with (2.33), find an

dx’
expression for Ng,, —— I . Project it into the LRF and,

Y
in accordance with (2.27), write k5N, % =nhvhiN,,, x

dx” DN

d—); =nhvh? dlﬂ . The described procedure yields
DN,

s dl "=k~

NN*[n"'ng—v,'N°U,z—(nv,) 'as]
+1 (U 5= U N ‘

Using the decomposition (2.29) in this result one obtains

ht ;lf =n""'n 4hf— N,NP)
+ (nvyr)_ I{En(NaNy_ 5Dayﬁ+ (n_ zvgr)waﬁ]Nﬂ

+(@-N)N,—a,}. (2.34)

Consider a medium at rest in a Lorentz frame (U=
const). In the usual Galilean coordinates in this frame,
(2.34) reads
dN,

o e
in agreement with the classical result [see Pomraning
(1973), Chapter V; for a medium with the refractive
index a function of position in space only, see also,
e.g. Born and Wolf, (1964), Chapter 3).

—(N*n)N,] (a=1,2,3)
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The system of Egs. (2.28), (2.32) and (2.34), together
with relations (2.25), (2.26) and (2.27) imply the original
Hamiltonian system (2.12a) and (2.12b) with (2.10)
and (2.11). '

II1. Relativistic Kinetic Theory of Photons in a Dispersive
Medium

Among recent extensive reviews on the kinetic theory
of particles in curved spacetime, the most suitable one,
for our purposes, is contained in the article by Ehlers
(1973). Only there is a Hamiltonian description of the
phase flow (in the cotangent bundle over spacetime)
explicitely used. In this section we will adhere to the
concepts and mathematical tools of the Ehlers review
(also referring the reader to it in connection with the
formalism of Cartan’s differential forms).

The particles we wish to study move along the world-
lines given by (2.12a) with 4-momenta determined
by (2.12b). In general, considering x* p, as fundamental
variables, we may define the 8-dimensional one-particle
phase space P as the collection of all possible instantane-
ous states of photons and of particles with non-zero
rest mass, described by pairs (x% p,). The phase space
is thus a part of the cotangent bundle T*(M) over
spacetime M. In the kinetic theory of particles with
non-zero rest mass and of photons which are not
affected by refraction or dispersion one defines P as

" the set of all non-spacelike future-directed covariant

vectors at arbitrary events, so that the boundary of
P in T*(M) consists of the states of particles with zero
rest mass. Since the 4-momentum of a photon in a
medium may be a spacelike vector (it is whenever n> 1),
we also have to include spacelike vectors into P. We
only require the 4-momentum to be future-directed
as measured in the LRF (i.e. the condition covariantly
reading p- U <0 at each event). The states of photons
in a medium with refractive and dispersive properties
do not form the boundary of the phase space of all
particles in general but, similarly to the states of particles
with a given rest mass, they form a 7-dimensional
sub-phase space. It is given by Egs. (2.10), (2.11) and,
hereafter, will be denoted by the symbol P,.

The paths of photons determine the phase flow in P,
i.e. the congruence of curves with the tangent vector
field — the Liouville vector (operator) —

0# 0 oH 0
L= dp, 0x*  0x* dp,’ 3
where 04 /0p, and 05 /0x* are given by (2.13) and
(2.30).

Since there is a simple correspondence, given by the
metric, between covariant and contravariant vectors,
we can use either (x? p,), or (x% p% as local coordinates
in P, in the latter case obtaining a representation

of L in the form

Lo e o )
~ op, 0x*  |ax° ' dp, Jamol |9 op*’

(3.2)

which, for photons in vacuum, reduces to the standard
expression

0

0
L = pa apa .

ox*

— [';ypﬁpv

Note that in the case of a non-dispersive medium the
Liouville operator may also be represented analogously
as in vacuum,

0 0

L=P“ﬁ —fﬁyﬁﬂﬁ"a’;, (3.3)

if the optical metric (2.21) is employed. [r %, are the
Christoffel symbols formed by means of (2.21).]

The Liouville vector is tangent to P,:L(#)=
0K 0H 0K O
dp, 0x*  0x* Op,
in P, and later take into account the dispersion relation

H# =0,o0r,we may restrict L to P, from the very beginning
and write, for example,

ko _aro
" dp, 0x* 0Ox' dp;’

=0, so that we may also use (3.1)

(i=1,2,3)

assuming p, to be determined by the dispersion relation
(2.10). (The root for which p- U £0 must be chosen.)
Following Ehlers (1973), we now define the Riemannian
volume element — a 4-form

1
n=] / —g dx0123= I'_napyadxaﬁyé ,

where g=det(g,;) and an abbreviation dx*’=dx*A
dx? Ndx? Ndx® for the wedge product is used (also,
dx**7=dx*\ dx? A dx" etc.). Similarly, a volume element
in 4-momentum space can be defined,

1
n=()/ —g),dp°***= 0 MapysdD™7° .

34

(3.5

The flux of a vector field V through a hypersurface &
in spacetime is given by

ij' 1‘]=ij¢61,

where V -5 is the contraction of # with V and a cova-
riant 3-form

1

%= 3y lapriX" (3.6)

is the hypersurface element. If x°=const in the LRF is
chosen, as a hypersurface &,

0,=Udx'?3, (3.7
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with U,= — 62. Further, the canonical Lebesgue measure
in phase space P can be introduced by

Q=—dx0123/\dp0123=7,/\7!5. (3.8)

The contraction of 2 with the Liouville vector L re-
presented by (3.2) leads to the 7-form
o=L Q= ot o, AT

op,

1 0 OH
- = —+ — *| g7 dp?° Ay 39
¢ Mabvs | e T 3p, ol | 974 N (3.9)
A hypersurface & in spacetime and 4-momenta regions
at each point of & form a hypersurface £ in P. When
restricted to such a X, the 7-form w is simply given by

(3.10)

In particular, choosing a hypersurface x°=const in the
LRF as &, we obtain

oA
w=——dx'23Adp° Ndp'?3.

9po
Defininga divergence operator relative to Q by d(W - Q)=
(DivW)Q, where W is an arbitrary vector field on P, we

PH >H
hat Divl= — — ———

see that DivL adp,  opon

Ehlers, 1973) that
&L,2=dw=0,

=0. It follows (see

Z0=0, (.11)

where &, is the Lie derivative with respect to the
phase flow. This invariance of @ and w with respect
to the phase flow immediately implies Liouville’s
theorem: Q and w — measures of domains in P are
unchanged along the phase flow generated by L.
Equations (3.1), (3.2) and, of course, (3.4)—(3.11) hold
in the same form regardless of whether photons pro-
pagating in a medium in curved spacetime, or particles
with a given arbitrary rest mass freely moving in curved
spacetime, are considered; clearly, phenomenological
photons in the medium can be incorporated into the
framework of the general relativistic kinetic theory.

Let us now concentrate on the 7-dimensional phase

" space P, and try to find analogues of 2 and  from P.

Using the fact that not only @, but also #(#)Q, with #
being an arbitrary function of 4, is an L-invariant
measure on P, we define an L-invariant measure on P,
by

Q,=2F(p- U)6[2#(x* p )12, (3.12)

where F=1 if p- UZO0, otherwise F=0, and ¢ is the
Dirac distribution function. Although (3.12) is manifestly
covariant, it is convenient to integrate the J-function
over p° taking into account the dispersion relation
(2.10), (2.11). In this way one finds

Q,=nAm,, (3.13)

where 7 is the space-time volume element (3.4) and

[/_——édplzs

i 3
i 3 - UP— 7= D (- U)| Uy

. (3.14)

n=

Do+

In particular, in Galilean coordinates in the LLRF we
obtain the simple expression

d 123 Urd 123
n,= pan - gnzv , (3.15)
nhvv—+n‘
ov

which for n=1 reduces to the standard special relativistic
result. Now, consider a hypersurface & in spacetime
and, at each point of &, photon 4-momenta constrained
by (2.10). In this way a 6-dimensional hypersurface
2, in P, is formed, the measure on it [the analogue
of (3.10)] being given by

o0H

w,= E’:Ga/\nn‘ .

Regarding (2.13),(3.7) and (3.15), we see that in the LLRF,
|eo,| =dx'?* Adp*2?, (3.17)

so that w, is an ordinary phase-space volume element.
It is easily seen that (3.17) holds for an arbitrary observer
with the 4-velocity U, provided he uses Galilean
coordinates and his hypersurface x°=const, so that

6,=Udx'?®, U,=—8.
Analogously as in P, we can prove Liouville’s theorem

#.,2,=dow,=0, %, »,=0.

(3.16)

Following the rigorous arguments, given by Ehlers
(1973) for photons in vacuum, one can introduce a
unique non-negative distribution function f on P,
such that ’

N[zn] =j2,,fwn

determines the mean number of states of the photons
in the medium, intersecting the hypersurface X,. The
distribution function is a scalar on P,, which for an
arbitrary local observer coincides with the ordinary
distribution function owing to (3.17). If the photons
stream through the dispersive medium without under-
going collisons, f satisfies Liouville’s equation

L(f)=0. (3.18)

(Recall that it does not matter whether we use L instead
of L,, taking into account the dispersion relation later.)
When, except for undergoing continuous refraction
and dispersion, the radiation interacts with the medium
so that there is spontaneous and stimulated emission
of radiation by the medium, and the absorption and
scattering, the distribution function satisfies the equation
of radiative transfer (the Boltzmann kinetic equation)

L(f)=yg, (3.19)
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where the right-hand side describes a change of f due
to the interactions mentioned above. In this paper we
are primarily interested in incorporating refractive and
dispersive effects into the “streaming terms” of the
equation of radiative transfer — the left-hand side
of (3.19) —; and the form of g will not be discussed.
Since it is not changed by refraction and dispersion,
we may just refer to the literature (see e.g. Lindquist,
1966; Ehlers, 1973; Novikov and Thorne, 1973).

In astrophysics one usually works with the specific
radiation intensity I, instead of the distribution

" function f. Hereafter, we confine the discussion to the

LLRF. Introducing the direction angles 0, ¢ in the
LLRF we can express the volume element 7, glven
by (3.15) in the form

= Yor 20
M= 1P dpsinfddo ,

where (using the dispersion relation)
=[P +@*? +(p**1*=nhv,
so that
7, =v,,nh*vd(nv) sinfdfde .
In view of (2.13), the phase-space volume element (3.16)
in the LLRF reads
|w,| =dV h3(nv)*d(nv) sinfd0de
=dVh3(nv)?v,, 'dv sinfdfde .

From the definition of the distribution function we
thus find the number of photons in the volume dV,
with frequencies v in the range dv and directions in the
solid angle sinfdfd¢ about (6, ¢) as seen at x*:

B3 (mv)*v,, ' f(x*, hv, 0, @)dV dv sinfdfdy .

The specific radiation intensity, defined as the energy
flux per unit solid angle per unit frequency range, is
obtained by multiplying the last expression by hvv,,
because the photons with the energy hv propagate
with the velocity v

I,=h*3

gra

n? f(x% hv, 6, @) . (3.20)

If the radiation streams through the medium in an
arbitrary gravitational field and is affected by the
medium owing only to refraction and dispersion,
Liouville’s equation guarantees that the distribution
function does not change along the ray. Therefore,
(3.20) implies

1
;}—3# =const (3.21)

as measured in the LLRF’s along the ray. This generalizes

the well-known relation I,/v®=const along a ray in

vacuum, which is often used in the discussions of
optical observations in relativistic astrophysics (e.g., in

_cosmology, in the studies of the optical appearance

of a collapsing star, or of a star orbiting a large black
hole).

As a special case, consider a refractive and dispersive
medium at rest in an inertial frame in special relativity.
Equation (3.21) implies

d(I, dvl,
-3 -4
v dl( ) 3v A= =0,

where dl is a spatial distance corresponding to an
increment dw in the parameter along the ray [see (2.27)].
Using (2.32) (with o,,=0=a,=0), we immediately
obtain the classical result

d (I, on(lL,)\

[Cf. Eq. (5.69) in Pomraning (1973), and the long
derivation preceding it.]

The right-hand side of the equation of radiative transfer
is usually analyzed in the LRF (see, e.g., Novikov and
Thorne, 1973). In view of (3.21), in the LRF we can
write the equation of radiative transfer along a given
ray in the form

d
dl

Evaluating the left-hand side with the help of (2.32),
one can directly generalize the general relativistic

radiation transfer theory as described by Novikov
and Thorne (1973).

I,
( ) = (interaction effects with the medium).

IV. Radiative Transfer in Dispersive Media: Examples
1. Black-body Radiation

Consider a source emitting radiation, which has a
black-body spectrum in a transparent dispersive medium
near the source. In the neighbourhood of an event xZ,
the energy density of the black-body radiation in the
medium is given by (Bekeﬁ 1967)

8nhvin (nv)
e = exp(hv, /kT) 1[0
so that the specific intensity reads
I 2hvin?
ve ™ exp(hv /kT)—1’

where the subscript refers to the “emission” event X2,
and where n, =n(x%, v,). Suppose the radiation propagates
through the medium without interaction except for
refraction and dispersion. Equation (3.21) then implies
that an observer at rest with respect to the medium,
observing the radlatlon at an event x%, will see the
spectrum

(4.1)

[ - 2hv3nd
" exp [hv (vo)AT,]— 1’

42)
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in which v, can be expressed by means of v, by integrating
(2.32) in the LRF’s along the ray connecting x% and x§.
The spectrum (4.2) will be that of black-body radiation
with the temperature T,= T,v,/v, whenever the redshift

vo/V., found from (2.32), is independent of the frequency -

emitted. An inspection of (2.32) reveals that this, in
general, will be the case if the medium is non-dispersive
or, allowing for dispersion, if the refractive index is
independent of time as measured in the LRF, and both
the expansion and the shear of the medium vanish.

2. Radiative Transfer in a Dispersive Medium in the
Friedmann Universe

Consider a homogeneous and isotropic dispersive
medium at rest with respect to the fundamental observers
in the Friedmann universe.. Assume the refractive
index to be a function of the cosmic time () and of the
frequency. Let us focus on a fundamental observer who
sees a pulse of radiation moving with the velocity

a -1
Vgr= E(nv)] at time t. After an interval dt the

radiation has travelled the distance dl=v,dt and is
passing a second fundamental observer who is moving
away from the first with the velocity v, =dl d/a [a=a(t)
is the expansion function, the dot denotes d/dt]. Owing
to the first-order Doppler effect, the second observer
detects a frequency lower by dv=—vnda~'dl. The fre-
quency also changes because of the time dependence

of the refractive index, namely, by dv= —v%dl =

—viwv,dt. Putting both effects together [and using
(2.17)] we find that

dv 1 om\'(a n
i —‘V( +m) (a*z)'
Of course, the same result can be obtained from the
general formula (2.32) (in which 6=d/a, 7,5=a,=0),
but the procedure above — which is a generalization
of the derivation of the standard redshift formula by
Peebles (1971) — is more intuitive.

Let us assume the dispersive medium to be a cold
tenuous plasma with the refractive index (2.18), where
v2=e’n,/mm. Since the electron number density
n. decreases.due to the expansion as a3, we can
write v2=Ka™?, K being a constant. Substituting this
refractive index into (4.3), we arrive at a differential
equation for v as a function of a. This equation can be
explicitly solved to yield

v=(c/a®*+K/a®)'?,
so that ,
vo=[(a/ao)* (v — Vge) + V,z;o] vz 4.4

where the subscripts “0” and “e” refer to the observation
and emission event. Note that, owing to the dispersion,
the redshift depends on the frequency emitted. The

4.3)

c=const,

“refractive” redshift may really occur if there is an
intergalactic plasma, but it is practically negligible even
for very low radio frequencies. Assuming the present
number density of intergalactic electrons to be ~ 1073
cm™3, it follows from (4.4) that

a, 1 (a0>2 9x 102

v0~ U
v

Tay ¢ 2
the first term corresponding to the standard cosmological
redshift, the second term to the “refractive” redshift.
For example, a,/a,=4 and v,=4x10°Hz, the “re-
fractive” redshift is about seven orders of magnitude
smaller than the standard cosmological redshift:

Zypt = (Ve/vo) —1= Zcosm + Zrefr = [(ao/ae) - 1]
+[4.5% 10¥(ag/a)*v;*1=3+72x1077.

Refraction and dispersion of radiation in the inter-
galactic plasma certainly took place to a greater degree
in earlier epochs, but then other interaction effects
also have to be taken into account. Even at the present
epoch, however, the dispersive properties of the inter-
galactic medium' might reveal themselves by affecting
travel times of low-frequency radiation from quasi-stellar
sources (see Haddock and Sciama, 1965).

a

,  [vl=Hz,

e e

3. The Equation of Radiative Transfer in a Spherically
Symmetric Case

Radio waves may be significantly affected by both
dispersion and strong gravity in plasma clouds around
compact objects like neutron stars and black holes.
In the following we derive the explicit form of the
equation of transfer in a spherically symmetric case.
Consider a spherically symmetric dispersive medium
which is non-stationary in general. The medium may
be the main source of the curvature of the spherically
symmetric geometry (e.g. a collapsing star), or it may
be regarded as test matter, moving in a given spherically
symmetric background spacetime (e.g. a plasma cloud
falling into a-Schwarzschild black hole).

The metric in the comoving frame of the medium can be
written in the form

ds?> = —e?®dt? + e>4dr? + R*(d6* +sin?0dg?) 4.5

where @, A and R are functions of r and t. [We follow
the notation of Lindquist (1966) who has given the
explicit form of the general relativistic transfer equation
in a spherically symmetric medium without refractive
and dispersive properties.] The 4-velocity of the medium

0
= _ﬁ— 1 = —4_
U=e Pt together with the vectors e;=e P
., 0 0
= -1 _ = i -1 -
e,=R %0 and e;=(R sinf) 20 form an orthonor

mal tetrad at each event (a basis in the LRF). The
spherical symmetry of the geometry and of the medium
implies that the distribution function f depends only
on four variables, which can be conveniently chosen
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as follows: E=hv — the energy of a photon as measured
in the LRF; pu=cosf — the cosine of the angle, measured
in the LRF, between the projection of p onto the 3-space
orthogonal to U (ie. the direction of propagation)
and the radial direction given by e;; and coordinates
r and t. The refractive index n may be a function of only
r, t, and v. (f was chosen to depend on E, instead of
v itself, to reach exact agreement with Lindquist’s
notation.) Now, it can be seen easily [by calculating p,
normalizing it, projecting onto e;, and using the
dispersion relation (2.10) and (2.11)] that

ed)— A pl

n po

" and, of course,
E=hv=—e"%p,, 4.7)

Do and p, being covariant components of p in coordinates
{t.7,0, 0}.
In order to find the explicit form of the equation of
transfer (3.19), we start out directly from L as given by
(3.1), and assume the forms of U, n and f as described
above, so that L(f) reads
L(f)= oHof oHof dEIf L duof

~ Opo 0t  dp, or  dwoE ' dwou’

du
and%—can be expressed in

. Using then (2.11) and

Using (4.6) and (4. 7)

dr dt dpo and dp,
aw’ aw’ dw ¢ aw
(2.12a) and (2.12b), all “streaming” terms in the transfer
equation can be explicitly found. It is convenient to
write the transfer equation in terms of the operators
(cf. Misner and Sharp, 1964; Lindquist, 1966)

terms of —

0 0
D,=e®—-, D,=e 41—,
= T
and the variables
U=D,R, TI=D.R.

Somewhat lengthy but straightforward calculations
yield the final explicit form of the equation of radiative
transfer in a dispersive medium in the spherically
symmetric case:

nE <n+v2—:) D,f +nEuD, f

. U
—nE? [,uD ¢+n/,¢2DA+n(1—p2)i-

of

+Dn+v— 3E

En Dtp}

D,n

+nE(1—u2)[— R

+u<n+v%)(%—DtA)]%=g. 4.8)

Provided that n= 1, this equation reduces to the transfer
equation as given by Lindquist [1966, Eq. (3.7)], but
even if n=1 from the very beginning, our derivation
differs from that of Lindquist. If the medium is non-
dispersive, we may start out from L in the form (3.3)
and apply Lindquist’s procedure directly. (In the
non-dispersive case, we can actually guess the explicit
form (4.8) from Lindquist’s result, if appropriate
identifications, based on the existence of the optical
metric, are made.)

Assuming the medium to be static and imposing the
condition R(r)=r, we can simplify Eq. (4.8) to the
following form:

_ of - —u?dn 6f]
A _
¢ 'nk ‘# or +( r - n dr) ou
_ do af af
—_— A — [—
e “nE o {(1 )a# +UuE = 35| =9- 4.9)

Except for the multiplication of the terms by n, the
only difference between (4.9) and the transfer equation
for a medium without refractive properties is the term
o l—p*dnof . . e
E—————. Provided that the identification

n drou

is made, the last term is formally the same as
—e “nE(1— d¢ af

nee™®
ie. a term which can be

identified with the gravitational deflection of radiation.
Thus, also in the transfer equation a well-known
equivalence® between the gravitational field and the
optical medium is exhibited.

V. Concluding Remarks

As demonstrated, there appear to be no obstacles in
extending the general relativistic radiation transfer
theory to media with refractive and dispersive effects.
In general, of course, we should consider anisotropic
media such as, for example, plasma in a magnetic
field, and we should also incorporate polarizational
properties of radiation into the equation of transfer
in a manner similar to that used recently by Anile and
Breuer (1974) for non-refractive and non-dispersive
media in general relativity.

The methods of solving the relativistic transfer equation
will, in most of the tractable cases, not differ from known
classical methods. In particular, they will be similar
in spherically symmetric cases.

As indicated in the Introduction, one can encounter
astrophysically plausible situations in which refraction
and dispersion as well as the curvature of spacetime
can play an important role. However, there are problems
which do not involve curvature at all, but nevertheless
can be tackled to an advantage by using the generally
covariant form of the transfer equation. For example,

%) For a recent discussion of this equivalence, see de Felice (1971)
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Castor (1972) employed the method of Lindquist
[yielding Eq. (4.8) with n=1] in order to study radiative
transfer in spherically symmetric flows with the in-
inclusion of special-relativistic corrections. Castor’s
analysis, motivated by high-velocity flows in quasi-
stellar objects, should be easily extendable to flows of
dispersive and reftactive media by using the procedure
leading to Eq. (4.8).
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