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Abstract. The Cayley-Darboux problem for the Roche model of binaries is reinvestigated. Generalised
Roche coordinates are then defined and calculated in the form of power series of potential for the general
case of non-synchronous binaries with eccentric orbits.

1. Introduction

The computation of models of stellar atmospheres and comparison of the corresponding
synthetic spectra with observations is an important clue to the investigation of stars. The
great progress in refining the microphysics in this field (e.g., opacities and statistical
equilibrium) contrasts with the roughness of the methods used to incorporate the
geometry and dynamics of atmospheres. The line profiles of rotating stars are usually
calculated by convolution of rotational profiles with those radiated by the static star,
despite the oblateness of the rotating star and variability of 7. and g across its surface.
These effects are occassionally included in modelling the tidally distorted components
of binaries via the integration of spectra of plane-parallel models with T and g related
by the gravity-darkening law. However, due to von Zeipel’s paradox, hydrostatic and
radiative equilibria (commonly used in these models) cannot be simultaneously valid in
distorted stars. Moreover, the geometrical thickness of the atmosphere need not be
negligible in comparison with the curvature radius of the star’s surface. Regarding the
general importance of contact and semi-detached, as well as rapidly rotating stars, it
would be desirable to improve the computing of their atmospheres both from the
hydrodynamical point of view (e.g., calculation of meridional circulations and stellar
wind) and in treating the radiative transfer under conditions of general (non-symmetri-
cal) geometry and velocity field. To simplify this (generally 3-dimensional) problem, it
is useful to treat it in coordinates fitting its approximate symmetry along the surface.

Under the condition of hydrostatic equilibrium, which can be accepted as a good
zero-order approximation, the atmosphere must be homogeneous on each equipotential
surface ¢ = const. It is thus convenient to describe the atmosphere structure in a
coordinate system {g’|?_,}, where ¢'(x) = ¢(x). This is the idea of Roche coordinates
introduced by Kopal (1970). It would be naturally pleasant to find a 3-orthogonal system
of this kind. However, the requirement that such coordinates exist (Cayley’s (1872)
problem), imposes a condition (the Cayley—-Darboux equation, Darboux, 1898) which
must be satisfied by function ¢. The validity of this condition for Roche’s binary
potential was investigated by Kopal and Ali (1971) with a negative result. Unfortunately,
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this important result of non-existence of any 3-orthogonal Roche coordinates was not
appropriately pointed out in recent reviews (e.g., Kopal, 1972) and the publicity of the
computations by Kitamura (1970), which are actually performed only in the planes of
symmetry, caused confusion. This misunderstanding has led the present author to
deriving the radiative transfer equation in general orthogonal coordinates (Hadrava,
1981), which is actually applicable only to single rotating stars.

In Section 2 the Cayley problem is reinvestigated and the Roche coordinates #, £ are
defined as continuations of asymptotically (at the centre of star) spherical coordinates,
which are perpendicular to the equipotential layers, but not mutually perpendicular. In
Section 3 the explicit form of these coordinates and the corresponding metric are given
for binaries with eccentric orbits and general rotation.

2. The Cayley Problem

Let us construct a coordinate system {g’(x)|;_;} = {®, n, ¢}, where coordinate lines
n = const. and ¢ = const. are perpendicular to the equipotential surfaces of a given
potential ¢(x). The transformation from Cartesian coordinates {x’|?_;} to {¢’[?_,} is
fully determined by the dependence of #n(x) and &(x) on a particular surface
¢ = ¢, = const. and by the equations of coordinate lines

[dx’] _ Ve .1)
d¢ n, £ = const. (V¢)2

It is always possible to choose # and ¢ mutually perpendicular

ox' ox*

on o¢
on surface ¢ = ¢,. This can be achieved, e.g., by an arbitrary choice of #, and & is then
determined by condition (2.2). However, to ensure the conservation of the perpen-

dicularity of # and ¢ on the other equipotential surfaces, condition (2.2) must be
invariant with respect to motion (2.1), i.e., the condition

SIS RS
d¢ m&=const. O (V‘P)z (V¢)2 o¢
2o
(Voy* on 7 8¢

must be satisfied. This condition, together with the conditions of orthogonality

2.2)

=823 =

(2.3)

&; ox_ 0, (2.4a)
on
Ox’
. =0, (2.4b
(o) o )
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select the #- and &-coordinate lines in the directions of the eigenvectors of projection
of operator ¢, onto the tangent plane to the equipotential. To ensure the invariance of
these directions with respect to motion (1),

d [ox* ox’
Lo
d(,b aﬂ aé n, &= const.

x|, ¢k> P ,-(&)]51"_
= Vil ——= |y ke - =
an[ <(v¢>2 ot Puc gap "0 \wop) | o
_ L ooxt X/
V)t on 7 o¢’

@.5)

where

Ay = (Pt + 2000) 010 — 4GB P15 (2.5a)
must be satisfied. Operators 4, and ¢; must thus have common eigenvectors
(0x'/0g7)|3- , in the tangent plane to the equipotential surface. This is possible only if
they commutate, i.e., if

0 =B = P(APp — pPA)P, (2.6)
where
Py=29;- 09 (2.7)
(Vo)?

is the projector to the tangent plane to ¢ = const. There is only one linearly independent
component of Equation (2.6)

0= 8ijk¢iBjk + 2sijk¢i'Aijbn¢mk =
= 2£yk¢i[(l?1'lm¢m(¢lk¢n¢n - ¢l¢kn¢n) - 2¢jm¢m¢kl¢ln¢n] . (28)

It can be proved by straightforward calculation of all 222 terms of this summation (138
of them contain the third derivatives of ¢), that this equation is identical with the
well-known Cayley—-Darboux equation, which has the form of a determinant of a6 x 6
matrix. This equation can be obtained as the condition of existence of a nontrivial
solution of homogeneous linear equations in (dx“/dn) (6x7/6&), which follows from
Equations (2.2) and (2.4) and their derivatives (see, e.g., Kagan, 1948).

Another approach was chosen by Kopal and Ali (1971). Their procedure can be
briefly summarized, if
xk

~ e, — (2.9)

ox? 0
o¢

on

is expressed from Equations (2.2) and (2.4a). Substituting this into Equation (2.3), one
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obtains a quadratic equation for dx/d¢, which (together with Equation (2.4b)) forms a
homogeneous set. Its solution is of the form

ox*

Y ~ X' = ePDPP + 2T ¢ yap,, (2.10)
where
a; = &; = Eaa PPy (2.10a)
and
D= Z | €| [2(a13< - ajjakk)(Piz - 4(aijaik - aiiajk)()bj(Pk] . (2.10b)
ik

The condition of integrability of Equation (2.10) as a partial differential equation for
& = &(x) is then

0= e, XX, ;. (2.11)

Unfortunately, owing to the complicated form of these expressions, any attempt to prove
the equivalence of this method with the two mentioned above fail.

It should be pointed out once more, that the incompatibility of a given potential with
the Cayley-Darboux equation (2.8) does not mean only a technical problem in finding
an analytical expression for the Roche coordinates (as defined by Kopal, 1970), but it
means the principial impossibility of the existence of any orthogonal coordinates
{¢'} = {¢, n, &}. Since the Roche potential can only be stationary in corotating, i.e.,
non-inertial coordinates {x, y, z}, the Roche coordinates cannot be generally time-
orthogonal either. It is thus not worth insisting on condition (2.2), but it is possible to
define the Roche coordinates by Equation (2.1), which ensures the validity of condi-
tion (2.4), and to choose initial conditions on a surface ¢ = ¢, (or ¢, — — o0), e.g., in
the form of spherical coordinates.

3. Roche Coordinates in Binaries

Let ¢ be the Roche potential of a binary component (see Wilson, 1979),

__ QR [R QR QR QR , (1+O)P z_z]= 3 P
T U+olr r-b b D27 2 (Fre)|=, 2w

_ YRR QR (o (O 5 95“’(1)" }
" el T O R =ro) ey 2 \p) o |

(3.1)

where Q is the mean orbital angular velocity, R is the semi-major axis of the binary orbit,
Q = M,/M, the mass ratio, D the instantaneous separation of the secondary star,
i, = D/D the unit vector in its direction, r,, = (i, r) the projection of radius vector r onto
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ip, P = w/Q, where w is the rotational angular velocity of the primary star (sidereal —
i.e., with respect to an inertial system), i, = ®/w, and r_, = (i_r) the projection of r onto
i,, (which is not necessarily perpendicular to the orbital plane), n = r/r. The third term
(QR/D) in brackets of the first form of Equation (3.1) is the potential in the centre of
the primary due to the secondary star. It can be subtracted, because it is constant at
a given moment. The zero value of the physically ambiguous coefficient a, will simplify
later calculations.

Naturally, only if R =D, P=1, o||Q (zero eccentricity, synchronous rotation
perpendicular to the orbital plane) or Q = 0 (rotating single star), can hydrostatic
equilibrium of the primary be achieved exactly. However, form (3.1) of the potential
includes both these cases and, in a general case of simultaneous rotation and tides (like
in the Earth-Moon system), it can yield a better approximation to the shape of the
primary than neglecting one of these effects.

If potential (3.1) is substituted into Equation (2.8), one find that the Cayley—Darboux
equation is satisfied only if @ || D. The special cases are Q = 0 (rotating single star)
and/or P = 0 (i.e., zero sidereal rotation). Cayley’s problem is trivial for @ || D, because
rotational symmetry with respect to this axis decreases its dimension. In a general case
Equation (2.8) is valid only on special surfaces. Due to symmetry, one of them is the
plane spanned by i,, and i , and, if they are mutually perpendicular, the equatorial plane
is also. Kitamura (1970) carried out the computations for these very planes.

The gradient of potential (3.1) is

OR & (r\' .
+F k§3 B (lDPk—nPk_l) . (32)
The right-hand side of Equation (2.1) for coordinate lines 5, £ = const. can also be
expanded into power series in r. This equation then reads

dr i

— = D, (n)r*, (3.3)

d¢ kgz g

where coefficients D, are given by the recurrent formula

k-3 Jj+3
D, = (Ak—3 - Z Dk—j——4 Z (AlAj—l+2)>/A{1 (3.4)
j=-3 I= -1

(specifically D, = A _, /4% ). Let us look for the solution of Equation (3.3) in the form

o]

r=Y B(n0¢*. 3.5

k=1

Substituting this assumption into Equation (3.3) and comparing the terms of equal order
in ¢, we can find a recurrent set of equations for coefficients B,. The first one
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B, |B,| (3.6a)

has the solution

Q2R3
B, = e, (3.6)
1+Q

where e = e(#, £) is a unit vector in the initial (i.e., for r — 0) direction of the coordinate
line (e is arbitrarily parametrized by 7 and £). The equation for the second coefficient

-2B,= -B,-e(e'B,) (3.7a)

is a singular homogeneous equation. Its general solution
B, = Ce, (3.7v)

contains an integration constant C, which must be determined from the condition that
¢ = ¢(r) is one component of the inverse transformation to r = r(¢, #, £). The assump-
tion a, = 0 chosen above implies C = 0, i.e.,

B,=0. (3.7)

All equations for subsequent coefficients B, are also linear but non-singular. The next
one is still homogeneous (since A; = 0, B, = 0)

2.1-e®e)B; =0, (3.8a)
hence, its solution is
B3 = 0 . (3.8)

The equation

8 1
(3.1 - e®e)B, = = RQ;4 [%1: Gepip + (1 — 6e2)e +

4 +RQ)P C (@2 - De - ewiw):l, (3.9a)

where e, , = (ip ), admits of the solution.

_ Q8R! QR ~ (1 + Q)P2 .
6(1 + Q)4[ D3 (2epip — (Sef — 1)e) + TR ((5e2 - 3)e - Zewlw):l.
(3.9b)
In a similar way
10 p15
s = % [3(5ep — Dip ~ Sep(Tef — 3)e], (3.10)
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Q Q 12R18 .
B,=——— [4e,(Tel — 3)ip — 3(21el — 14e2 + 1)e], (3.11)
5”3 1+ QFD> pl/ep p D D

etc. The analytic expression for the Roche coordinates can thus be found to an arbitrary
order in ¢~ ' (~r).

The covariant components of the metric tensor in the coordinate base
{0,:} = {04 0, 0:} can be found from transformation (3.5)

or* or'
g_} 6q’ ki aqf ( )
By substituting Equations (3.5) to (3.11) into (3.12), we find that
1= Z o 3 Z k(n—k+1)(B.-B,_,. )=
n=1 k=1
4p6 10 p14 2
LY Q—L[QR (1-3e3)+ LHDP (2 1)]+
(1+ Q) (1+9Q0yLbD3 R?
12p19
+¢8 _QQTRT ep(3 — 5e3) +
2(1 + Q)¥D*
B QQI4R22 B
+¢ % = (-35¢} + 30e2 - 3) + a(¢p—19). 13
07 i oyps e =D+ oo (13)

It can be proved that, consistently with the construction of solution (3.5) described
above,

_ Z ¢——n 2 z k( —na—ki—l)=0 f0r i=2,3- (3'14)
n=1 ql

Finally,

. OB, .
Z¢>-"‘Z( ———a" )=
q; q;

n=1

Q4R6 QIOR14 QR
e (1+ Q) vt ¢ W[B D3 Qepiep; = (1 + Sep)y,) +
1+ Q)P?
( RQ) ((5 2 3),},1] - 2e,, wf):l
5 QlORls 1
+ ¢_6 IIQTB@ [6eDeDieDj - eD(7‘32D - 3)7’0'] t
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3QQI4R21
+¢7 7 —=—— [4(Te3 - Dep,ep; — les — 14ep + 1)y,] + o(¢p™8
()b 4(1 + Q)7D5 D Di%*Dj ( D D i ¢ )
for i,j=2,3, (3.15)
where
0
yij = (E fi—e—) ’ eDi = (iD _a_e—> ’ ecoi = (iw _e) ’ (3153)
oq' 0q’ oq" oq’

are coefficients dependent on the way of parametrisation e = e(#, £). If # and ¢ are
chosen as spherical coordinates, then

y; = diag(1, cos? ). (3.16a)
If, moreover, the pole ( = ©/2) coincides with i, then

ep =siny, epq, =Cosy, ep, =0, (3.16b)
and if the zero longitude is chosen in the plane (i, i), then

e, =cosasinyg + sinacosycosé, e,1 = Cosacosn — sinasinycosé,

e,, = —sinacosysiné, (3.16¢)

w?2

where « is the angle between i, and i,,. The nondiagonal component of the metric is,
in this case,

s ZQIORIZPZ .
3(1+ Q)

The Roche coordinates are thus orthogonal in plane (i, i ,), where sin ¢ = 0 and, hence,

e.,» = 0, and on the surface (where e ,; = 0) of a two-sided funnel, to which i, and i,

are tangent vectors (this surface approaches planes (ip, i, A i,,) and (i, ip A i) if
o = m/2).

82=—9¢ w1€w2 T (@7 %). (3.16)

4. Conclusions

The Roche coordinates can be defined by Equation (2.1). This definition abandons the
orthogonality of coordinates # and &, but it ensures their existence. The transformation
from Roche to Cartesian coordinates can be found in the form of power series (3.5).
The first six coefficients B, are explicitly given by Equations (3.6) and (3.11), and the
metric is given to the same degree of accuracy by Equations (3.13) and (3.15).
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